首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical theory and its application to dynamical electrons in molecules under intense electromagnetic fields is explored, in which we take an explicit account of nuclear nonadiabatic (kinematic) interactions along with simultaneous coupling with intense optical interactions. All the electronic wavefunctions studied here are necessarily time-dependent, and thereby beyond stationary state quantum chemistry based on the Born-Oppenheimer framework. As a general and tractable alternative framework with which to track the electronic and nuclear simultaneous dynamics, we propose an on-the-fly method to calculate the electron and nuclear wavepackets coupled along the branching non-Born-Oppenheimer paths, through which their bifurcations, strong quantum entanglement between nuclear electronic motions, and coherence and decoherence among the phases associated with them are properly represented. Some illustrative numerical examples are also reported, which are aimed at our final goals; real time tracking of nonadiabatic electronic states, chemical dynamics in densely degenerate electronic states coupled with nuclear motions and manipulation and/or creation of new electronic states in terms of intense lasers, and so on. Other examples are also presented as to how the electron wavepacket dynamics can be used to analyze chemical reactions, shedding a new light on some typical and conventional chemical reactions such as proton transfer followed by tautomerization.  相似文献   

2.
A theoretical study of photoinduced heterogeneous electron transfer in the dye-semiconductor system coumarin 343-TiO(2) is presented. The study is based on a generic model for heterogeneous electron transfer reactions, which takes into account the coupling of the electronic states to the nuclear degrees of freedom of coumarin 343 as well as to the surrounding solvent. The quantum dynamics of the electron injection process is simulated employing the recently proposed multilayer formulation of the multiconfiguration time-dependent Hartree method. The results reveal an ultrafast injection dynamics of the electron from the photoexcited donor state into the conduction band of the semiconductor. Furthermore, the mutual influence of electronic injection dynamics and nuclear motion is analyzed in some detail. The analysis shows that--depending on the time scale of nuclear motion--electronic vibrational coupling can result in electron transfer driven by coherent vibrational motion or vibrational motion induced by ultrafast electron transfer.  相似文献   

3.
An ab initio electronic wave-packet dynamics coupled with the simultaneous classical dynamics of nuclear motions in a molecule is studied. We first survey the dynamical equations of motion for the individual components. Reflecting the nonadiabatic dynamics that electrons can respond to nuclear motions only with a finite speed, the equations of motion for nuclei include a force arising from the kinematic (nuclear momentum) coupling from electron cloud. To materialize these quantum effects in the actual ab initio calculations, we study practical implementation of relevant electronic matrix elements that are related to the derivatives with respect to the nuclear coordinates. Applications of the present scheme are performed in terms of the configuration state functions (CSF) using the canonical molecular orbitals as basis functions without transformation to particular diabatic basis. In the CSF representation, the nonadiabatic interaction due to the kinematic coupling is anticipated to be rather small, and instead it should be well taken into account through the off-diagonal elements of the electronic Hamiltonian matrix. Therefore it is expected that the nonadiabatic dynamics based on this CSF basis neglecting the kinematic coupling may work. To verify this anticipation and to quantify the actual effects of the kinematic coupling, we compare the dynamics with and without the kinematic-coupling terms using the same CSF set. Applications up to the fifth electronically excited states in a nonadiabatic collision between H(2) and B(+) shows that the overall behaviors of these two calculations are surprisingly similar to each other in an average sense except for a fast fluctuation reflecting the electronic time scale. However, at the same time, qualitative differences in the collision events are sometimes observed. Therefore it turns out after all that the kinematic-coupling terms cannot be neglected in the CSF-basis representation. The present applications also demonstrate that the nonadiabatic electronic wave-packet dynamics within ab initio quantum chemical calculation is feasible.  相似文献   

4.
5.
6.
The electron-phonon coupling is critical in determining the intrinsic charge carrier and exciton transport properties in organic materials. In this study, we consider a Su-Schrieffer-Heeger (SSH) model for molecular crystals, and perform numerical benchmark studies for different strategies of simulating the mixed quantum-classical dynamics. These methods, which differ in the selection of initial conditions and the representation used to solve the time evolution of the quantum carriers, are shown to yield similar equilibrium diffusion properties. A hybrid approach combining molecular dynamics simulations of nuclear motion and quantum-chemical calculations of the electronic Hamiltonian at each geometric configuration appears as an attractive strategy to model charge dynamics in large size systems "on the fly," yet it relies on the assumption that the quantum carriers do not impact the nuclear dynamics. We find that such an approximation systematically results in overestimated charge-carrier mobilities, with the associated error being negligible when the room-temperature mobility exceeds ~4.8 cm(2)∕Vs (~0.14 cm(2)/Vs) in one-dimensional (two-dimensional) crystals.  相似文献   

7.
Grid-based schemes for simulating quantum dynamics, such as the multi-configuration time-dependent Hartree (MCTDH) method, provide highly accurate predictions of the coupled nuclear and electronic dynamics in molecular systems. Such approaches provide a multi-dimensional, time-dependent view of the system wavefunction represented on a coordinate grid; in the case of non-adiabatic simulations, additional information about the state populations adds a further layer of complexity. As such, wavepacket motion on potential energy surfaces which couple many nuclear and electronic degrees-of-freedom can be extremely challenging to analyse in order to extract physical insight beyond the usual expectation-value picture. Here, we show that non-linear dimensionality reduction (NLDR) methods, notably diffusion maps, can be adapted to extract information from grid-based wavefunction dynamics simulations, providing insight into key nuclear motions which explain the observed dynamics. This approach is demonstrated for 2-D and 9-D models of proton transfer in salicylaldimine, as well as 8-D and full 12-D simulations of cis-trans isomerization in ethene; these simulations demonstrate how NLDR can provide alternative views of wavefunction dynamics, and also highlight future developments.  相似文献   

8.
A detailed flux analysis on nonadiabatically coupled electronic and nuclear dynamics in the intramolecular electron transfer of LiF is presented. Full quantum dynamics both of electrons and nuclei within two-state model has uncovered interesting features of the individual fluxes (current of probability density) and correlation between them. In particular, a spatiotemporal oscillatory pattern of electronic flux has been revealed, which reflects the coherence coming from spatiotemporal differential overlap between nuclear wavepackets running on covalent and ionic potential curves. In this regard, a theoretical analogy between the nonadiabatic transitions and the Rabi oscillation is surveyed. We also present a flux–flux correlation between the nuclear and electronic motions, which quantifies the extent of deviation of the actual electronic and nuclear coupled dynamics from the Born–Oppenheimer adiabatic limit, which is composed only of a single product of the adiabatic electronic and nuclear wavefunctions. © 2018 Wiley Periodicals, Inc.  相似文献   

9.
The molecular dynamics with quantum transitions (MDQT) method is applied to study the fragmentation dynamics of neon clusters following vertical ionization of neutral clusters with 3 to 14 atoms. The motion of the neon atoms is treated classically, while transitions between the adiabatic electronic states of the ionic clusters are treated quantum mechanically. The potential energy surfaces are described by the diatomics-in-molecules model in a minimal basis set consisting of the effective 2p orbitals on each neon atom for the missing electron. The fragmentation mechanism is found to be rather explosive, with a large number of events where several atoms simultaneously dissociate. This is in contrast with evaporative atom by atom fragmentation. The dynamics are highly nonadiabatic, especially at shorter times and for the larger clusters. Initial excitation of the neutral clusters does not affect the fragmentation pattern. The influence of spin-orbit coupling is also examined and found to be small, except for the smaller size systems for which the proportion of the Ne+ fragment is increased up to 43%. From the methodological point of view, most of the usual momentum adjustment methods at hopping events are shown to induce nonconservation of the total nuclear angular momentum because of the nonzero electronic to rotation coupling in these systems. A new method for separating out this coupling and enforcing the conservation of the total nuclear momentum is proposed. It is applied here to the MDQT method of Tully but it is very general and can be applied to other surface hopping methods.  相似文献   

10.
11.
In earlier work on H2+, we showed how a dissociation adiabaticity parameter, gammaDv identical with (Dv/2Upm)(1/2) (Dv is the dissociation energy from vibrational state v and U(pm) is the molecular ion system's ponderomotive energy), proposed by Walsh et al., can be modified and be a useful indicator of the strong field dissociation regime for a homonuclear diatomic. In the case of H2+, the new adiabaticity parameter, gamma(mol), indicates when a dissociation process can be most easily described as multiphoton above-threshold dissociation (gamma(mol)>1) and when it is better described using barrier-suppressed dissociation (gamma(mol)<1). In the case of a heteronuclear diatomic like HCl+, different electronic states can lead to different dissociation product channels to which are ascribed different gamma(mol) values. We show for a wide range of laser wavelengths and intensities that this adiabaticity parameter successfully predicts the type of dissociation dynamics (multiphoton above-threshold dissociation versus barrier-suppressed dissociation) on each electronic potential curve. We also discover that the dynamics in one electronic state can influence the dynamics in another at the same laser wavelengths and intensities, overriding the predictive capability of an adiabaticity parameter defined for a particular electronic state. Reasonable physical explanations are provided for these overriding cases.  相似文献   

12.
Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids).  相似文献   

13.
The complex vibronic spectra and the nonradiative decay dynamics of the cyclopropane radical cation (CP+) are simulated theoretically with the aid of a time-dependent wave packet propagation approach using the multireference time-dependent Hartree scheme. The theoretical results are compared with the experimental photoelectron spectrum of cyclopropane. The ground and first excited electronic states of CP+ are of X2E' and A2E' type, respectively. Each of these degenerate electronic states undergoes Jahn-Teller (JT) splitting when the radical cation is distorted along the degenerate vibrational modes of e' symmetry. The JT split components of these two electronic states can also undergo pseudo-Jahn-Teller (PJT)-type crossings via the vibrational modes of e', a1' and a2' symmetries. These lead to the possibility of multiple multidimensional conical intersections and highly nonadiabatic nuclear motions in these coupled manifolds of electronic states. In a previous publication [J. Phys. Chem. A 2004, 108, 2256], we investigated the JT interactions alone in the X2E' ground electronic manifold of CP+. In the present work, the JT interactions in the A2E' electronic manifold are treated, and our previous work is extended by considering the coupling between the X2E' and A2E' electronic states of CP+. The nuclear dynamics in this coupled manifold of two JT split doubly degenerate electronic states is simulated by considering fourteen active and most relevant vibrational degrees of freedom. The vibronic level spectra and the ultrafast nonradiative decay of the excited cationic states are examined and are related to the highly complex entanglement of electronic and nuclear degrees of freedom in this prototypical molecular system.  相似文献   

14.
Time-resolved photoelectron spectroscopy (TRPES) is a powerful tool for the study of intramolecular dynamics, particularly excited state non-adiabatic dynamics in polyatomic molecules. Depending on the problem at hand, different levels of TRPES measurements can be performed: time-resolved photoelectron yield; time- and energy-resolved photoelectron yield; time-, energy-, and angle-resolved photoelectron yield. In this pedagogical overview, a conceptual framework for time-resolved photoionization measurements is presented, together with discussion of relevant theory for the different aspects of TRPES. Simple models are used to illustrate the theory, and key concepts are further amplified by experimental examples. These examples are chosen to show the application of TRPES to the investigation of a range of problems in the excited state dynamics of molecules: from the simplest vibrational wavepacket on a single potential energy surface; to disentangling intrinsically coupled electronic and nuclear motions; to identifying the electronic character of the intermediate states involved in non-adiabatic dynamics by angle-resolved measurements in the molecular frame, the most complete measurement.  相似文献   

15.
H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.  相似文献   

16.
The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln3+ aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the 1H NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln3+ ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times T1e and T2e. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of T1e, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes.  相似文献   

17.
The photodetachment spectroscopy of B3- anion is theoretically studied with the aid of a quantum dynamical approach. The theoretical results are compared with the available experimental photoelectron spectra of B3-. Both B3- and B3 possess D(3h) symmetry at the equilibrium configuration of their electronic ground state. Distortion of B3 along its degenerate vibrational mode nu2 splits the degeneracy of its excited C2E' electronic manifold and exhibits (E [symbol: see text] e)-Jahn-Teller (JT) activity. The components of the JT split potential energy surface form conical intersections, and they can also undergo pseudo-Jahn-Teller (PJT) crossings with the X2A1' electronic ground state of B3 via the degenerate nu2 vibrational mode. The impact of the JT and PJT interactions on the nuclear dynamics of B3 in its X2A1'-C2E' electronic states is examined here by establishing a diabatic model Hamiltonian. The parameters of the electronic part of this Hamiltonian are calculated by performing electronic structure calculations and the nuclear dynamics on it is simulated by solving quantum eigenvalue equation. The theoretical results are in good accord with the experimental data.  相似文献   

18.
Electronically nonadiabatic processes such as ultrafast internal conversion (IC) from an upper electronic state (S(1)) to the ground electronic state (S(0)) though a conical intersection (CI), can play an essential role in the initial steps of the decomposition of energetic materials. Such nonradiative processes following electronic excitation can quench emission and store the excitation energy in the vibrational degrees of freedom of the ground electronic state. This excess vibrational energy in the ground electronic state can dissociate most of the chemical bonds of the molecule and can generate stable, small molecule products. The present study determines ultrafast IC dynamics of a model nitramine energetic material, dimethylnitramine (DMNA). Femtosecond (fs) pump-probe spectroscopy, for which a pump pulse at 271 nm and a probe pulse at 405.6 nm are used, is employed to elucidate the IC dynamics of this molecule from its S(1) excited state. A very short lifetime of the S(1) excited state (~50 ± 16 fs) is determined for DMNA. Complete active space self-consistent field (CASSCF) calculations show that an (S(1)/S(0))(CI) CI is responsible for this ultrafast decay from S(1) to S(0). This decay occurs through a reaction coordinate involving an out-of-plane bending mode of the DMNA NO(2) moiety. The 271 nm excitation of DMNA is not sufficient to dissociate the molecule on the S(1) potential energy surface (PES) through an adiabatic NO(2) elimination pathway.  相似文献   

19.
20.
The dynamics of molecules under strong laser pulses is characterized by large Stark effects that modify and reshape the electronic potentials, known as laser-induced potentials (LIPs). If the time scale of the interaction is slow enough that the nuclear positions can adapt to these externally driven changes, the dynamics proceeds by adiabatic following, where the nuclei gain very little kinetic energy during the process. In this regime we show that the molecular dynamics can be simulated quite accurately by a semiclassical surface-hopping scheme formulated in the adiabatic representation. The nuclear motion is then influenced by the gradients of the laser-modified potentials, and nonadiabatic couplings are seen as transitions between the LIPs. As an example, we simulate the process of adiabatic passage by light induced potentials in Na(2) using the surface-hopping technique both in the diabatic representation based on molecular potentials and in the adiabatic representation based on LIPs, showing how the choice of the representation is crucial in reproducing the results obtained by exact quantum dynamical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号