首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— In this paper we describe the determination of the orientation of the absorption and emission transition dipoles of chlorophyll a and pheophytin a in their molecular frame. For this purpose we have embedded the pigments in anhydrous nitrocellulose films with a concentration of 2 × 10-7 mol/g. We have shown previously that under these conditions the pigments are in a purely monomeric state, are distributed uniformly both before and after stretching and that no intermolecular energy transfer among the molecules takes place.
Using a combination of steady-state anisotropy experiments on unstretched films and angle-resolved fluorescence depolarization measurements on stretched films, we obtain the orientation of the transition dipole moments of both pigments in their molecular frame and the orientational distribution function of the molecules relative to the stretching direction of the film.
The steady-state anisotropy measurements indicate that chlorophyll a has two distinct emission dipole moments and that excitation in the Soret-region results in simultaneous excitation of two or more absorption transition dipole moments. On the other hand, excitation in the QY-band involves only a single dipole moment. The directions of the transition dipole moments in the molecular frame are obtained from the angle-resolved measurements. Pheophytin a also exhibits two emission dipole moments, but the angle between them is much smaller than that between the corresponding dipoles for chlorophyll a . As a consequence the dipole moments contributing to the Soret-region could not be resolved and only an effective absorption transition dipole moment in the Soret-region is extracted.  相似文献   

2.
UV‐visible absorption and fluorescence properties of three series of σ–π‐conjugated polymers (copolymers of alternative oligothienylene and oligosilylene units) have been studied in dioxane solution. The energies of the absorption maximum, fluorescence maximum, and the 0–0 transition are found to be linearly dependent on the reciprocal of the number of thiophene rings in the repeating unit of the polymer chain, but almost independent of the silicon atom number. The σ–π‐conjugation in the polymers results in red shift in the absorption and fluorescence maxima, higher fluorescence quantum yields, and longer fluorescence lifetimes of the polymers, with respect to their corresponding analogous α‐oligothiophenes. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1873–1880, 1999  相似文献   

3.
The poly(p-phenylene vinylene) derivative MEH-PPV is known to exist as two morphologically distinct species, referred to as red phase and blue phase. We show here that the transition from the blue phase to the red phase is a critical phenomenon that can be quantitatively described as a second order phase transition with a critical temperature T(c) of 204 K. The criticality is associated with the trade-off between the gain in the electronic stabilization energy when the π-system of a planarized chain can delocalize and the concomitant loss of entropy. We studied this transition by measuring the absorption and fluorescence in methyltetrahydrofuran (MeTHF) in two different concentrations as a function of temperature. The spectra were analyzed based upon the Kuhn exciton model to extract effective conjugation lengths. At room temperature, the chains have effective conjugation lengths of about five repeat units in the ground state (the blue phase), consistent with a disordered defect cylinder conformation. Upon cooling below the critical temperature T(c), the red phase with increased effective conjugation lengths of about 10 repeat units forms, implying a more extended and better ordered conformation. Whereas aggregation is required for the creation of the red phase, its electronic states have a predominant intrachain character.  相似文献   

4.
The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence of excited-state asymmetric vibrations in those experiments.  相似文献   

5.
Interactions between lumophores have a critical influence on the photophysical properties of conjugated polymers. We synthesized a new series of light-harvesting polymers (poly-DSBs, I-IV) of dialkyloxy- or dialkyl-substituted distyrylbenzene (the substituents being methoxy, 2-ethylhexyloxy, and cyclohexyl) with short aliphatic linkage (methylene or ethylene) and examined the effects of interactions between lumophores and of chemical structures on the absorption, emission, and excitation spectra. The proximity between distyrylbenzene lumophores was shown to be critical to the interactions between lumophores and to the energy-transfer processes. In concentrated solutions and solid films, intermolecular aggregates exist resulting from different extents of interactions between lumophores and are found to involve at least three species: loose, compact, and the most aligned aggregates as observed by photoluminescence and excitation spectroscopies. We also found, for the first time, sequential energy transfer from individual lumophores to the most compact, aligned aggregates via the looser intermolecular aggregates, as observed directly by time-resolved fluorescence spectroscopy. Such a process mimics energy transfer in photosynthesis units and is so efficient such that the fluorescence color can be red-shifted drastically by the presence of comparatively few aggregates and that the light evolved from concentrated solutions and films of poly-DSBs I-IV is entirely or almost the aggregation emission. Although the sequential energy-transfer process in fully conjugated electro-/photoluminescent polymers due to inhomogenity other than distributed conjugation lengths has never been directly observed at room temperature, we suggest that events similar to those observed in poly-DSBs in conjugated polymers could occur but on a much shorter time scale, i.e., a few picoseconds.  相似文献   

6.
Summary: Several salicylaldiminate M(II) complexes of Nickel, Copper and Cobalt have been prepared and mixed with ethylene based polymers in order to prepare new composite materials with interesting morphological and optical properties by profiting of the presence of alkyl chains and push-pull substituents connected to the ligand structure. The phase dispersion behaviour of the binary films has been studied by scanning electron microscopy (SEM) and x-ray microanalysis, whereas the optical properties of the composite samples have been evaluated by UV-vis and fluorescence spectroscopy. The results in absorption have been analysed in terms of the anisotropy induced by the mechanical orientation of the polymer matrix and by the role of the metal centre according to the different strength of the complexes transition dipole moment. The luminescence behaviour have been discussed in terms of potential developments aimed at preparing polymeric supported Schiff base ligands for metal ions sensor applications.  相似文献   

7.
《Chemical physics letters》1987,139(2):196-200
Purely conformational contributions to dipole transition moments lead to a general new expression for the absorption spectrum of flexible conjugated polymers with persistence length ξc and alternation δ. Blue-shifts are found at rod-to-coil transitions without invoking rotational defects that break the conjugation. Conformational coupling in the weak-disorder limit increases the effective alternation.  相似文献   

8.
In order to better understand the nature of intramolecular charge and energy transfer in multibranched molecules, we have synthesized and studied the photophysical properties of a monomer quadrupolar chromophore with donor-acceptor-donor (D-A-D) electronic push-pull structure, together with its V-shaped dimer and star-shaped trimers. The comparison of steady-state absorption spectra and fluorescence excitation anisotropy spectra of these chromophores show evidence of weak interaction (such as charge and energy transfer) among the branches. Moreover, similar fluorescence and solvation behavior of monomer and branched chromophores (dimer and trimer) implies that the interaction among the branches is not strong enough to make a significant distinction between these molecules, due to the weak interaction and intrinsic structural disorder in branched molecules. Furthermore, the interaction between the branches can be enhanced by inserting π bridge spacers (-C═C- or -C≡C-) between the core donor and the acceptor. This improvement leads to a remarkable enhancement of two-photon cross-sections, indicating that the interbranch interaction results in the amplification of transition dipole moments between ground states and excited states. The interpretations of the observed photophysical properties are further supported by theoretical investigation, which reveal that the changes of the transition dipole moments of the branched quadrupolar chromophores play a critical role in observed the two-photon absorption (2PA) cross-section for an intramolecular charge transfer (ICT) state interaction in the multibranched quadrupolar chromophores.  相似文献   

9.
The ability to improve exciton diffusion lengths is a key issue in optimizing many opto‐electronic devices based on conjugated polymers. On the basis of quantum‐chemical calculations, we investigate a strategy consisting of extending the radiative lifetime of energy carriers through incorporation along the polymer backbone of repeating units with forbidden optical transition. The results obtained for poly(p‐phenylenebutadiyne), PPE, and poly(p‐triphenylenebutadiyne), PTPE, show that the larger number of hops performed by the electronic excitations during their lifetime in PTPE is compensated by the smaller hopping length (associated with the reduced conjugation length), so that similar on‐chain diffusion lengths are predicted in both polymers.  相似文献   

10.
The three-photon absorption cross sections of three different fluorene derivatives, with extended pi-electron conjugation lengths was experimentally measured and compared with shorter pi-electron conjugation length analogs. The effect of the conjugation length on the three-photon absorption cross section sigma(3) (') of this family of molecules has been elucidated. It is demonstrated that sigma(3) (') of the asymmetric compound D-pi-pi-pi-A is 6.6 times larger than its shorter configuration D-pi-A, while for the symmetric compounds D-pi-pi-pi-D and A-pi-pi-pi-A a two-fold enhancement was found relative to their shorter conjugation length analogs. Measurements of the three-photon excitation of these compounds in THF solution (10(-3)M) were accomplished with a tunable optical pulse generation pumped by a 25 ps Nd-YAG laser.  相似文献   

11.
We present systematic, theoretical investigations on structure-property correlations in polyfluorenes (PFs) derived mainly from the chain morphology, oligomer length, and chemical substitutent. Both the vertical absorptions and the vibrational contributions to electronic absorption and fluorescence spectra have been calculated. The effect of temperature on the nature of photoexcitations of PFs has been demonstrated. It is found that the vibronic (electronic and vibrational) structures of PFs are morphology-dependent. beta-phase oligofluorenes (beta-(FL)(n)) and ladder-type poly(p-phenylene) (LPPP) oligomers show a red shift compared to the spectra of alpha-(FL)(n). The asymmetry of the absorption and fluorescence spectra in alpha-(FL)(n) and the fluorenone (FLO) defect oligofluorenes alpha-(FL)(n)(-)(m)(FLO)(m) is significantly more pronounced than that in planarized beta-(FL)(n) and LPPP oligomers. By properly taking into account the anharmonic torsion potentials resulting from the strong electronic and nuclear coupling in the oligofluorenes, we have reasonably reproduced the experimentally observed spectroscopic features. The low-energy on-chain chemical defect sites such as FLO units act as charge-trapping sites for singlet excitations, are the predominantly lighting-emitting species, and thus alter the blue light-emitting properties of PFs whereas the blue-light-emitting properties of PFs are hardly influenced by the hole-transporting molecules. The optical properties of PFs have been predicted by the finite-size calculations. Energy gaps of PFs are estimated by extrapolations from excitation energies of oligofluorenes up to 21 FL units.  相似文献   

12.
The electronic absorption, fluorescence, and excitation spectra of furo[3,4‐c]furanone ( 1 ) have been measured in different solvents at different concentrations. We observed a complex dependence of absorption and excitation spectra as a function of the concentration in CH2Cl2 and THF due to aggregate formation. Interestingly, the fluorescence spectra were not affected. Resolving the puzzle was made possible by the fact that 1 fits perfectly into the channels of zeolite L (ZL) microcrystals to form 1 –ZL guest–host composites. The geometry of the ZL channel system ensures a well‐defined orientation of the embedded dye molecules, thereby leading to a preferred orientation of their electronic transition dipole moment (ETDM) and thus to objects with pronounced optical anisotropy properties. This enabled us to understand that in solution the monomers that are present at low concentration form an aggregate in which the molecules sit on top of each other and arrange into a J‐type aggregate configuration at higher concentrations. The signature of the latter is observed in the 1 –ZL composites. This seems to be the first example in which the insertion of molecules into a nanochannel microcrystal has helped in understanding the weak intermolecular interactions that take place in solution.  相似文献   

13.
A series of fluorene-alt-benzene based conjugated main chain polymers chemically attached with alkyl side chains of different lengths on phenylene rings were designed and synthesized by a palladium catalyzed Suzuki coupling reaction. The UV-vis absorption and fluorescence spectra, thermal stability of spectral property, phase transition behavior and morphology of the synthesized polymers were investigated. With increasing the length of the alkyl side chain, the UV and fluorescence spectra exhibit an obvious blue shift compared with those of the unsubstituted polymer. The alkyl substitution improves the thermal spectral stability of the polymers due to the steric hindrance of the alkyl side chains, thus leading to efficient separation of the main chain backbones. The phase transition behavior is closely related to the length of the alkyl side chains attached on the phenylene rings. The annealed films of the polymers display characteristic nematic liquid crystalline texture. TEM observations indicate that solvent-cast thin deposits of all the polymers show typical fibrillar morphology.  相似文献   

14.
Structurally perfect spiro-bridged ladder-type poly(p-phenylene)s, which show blue fluorescence in the photoluminescence (PL) and electroluminescence (EL) emission spectra, are prepared by Suzuki-Miyaura polycondensation and Friedel-Crafts cyclization. The polymers are free of ketonic defects, exhibiting excellent thermal and color stability upon annealing in air at 110 degrees C for 24 h.  相似文献   

15.
A homologous series of polyhydroxylated poly(p-phenylene)s with different alkoxy groups (C6PPPOH, C12PPPOH, and C18PPPOH) were synthesized with use of the Suzuki polycondensation reaction. Comparative studies of the structure correlation between their photophysical properties and film morphology is described. The absorption and emission spectra of polymers in solution and thin films showed similar features indicating that the electronic properties in solution were retained in the film state. Compared to the polymer with the short alkoxy chains (C6PPPOH), the polymers with long alkoxy groups (C12PPPOH and C18PPPOH) showed improved film forming properties with continuous and smooth film morphology. The absorption properties of the C12PPPOH showed an enhanced effective conjugation length and high quantum yield implying planarization of the backbone through alkoxy chain packing (C12H25O-) and potential hydrogen bonds. No overlap in the absorption and emission spectra was observed, which indicated minimized excimer formation or excitation energy transfer in the films. Time-resolved fluorescence measurements showed that the decay times increased from 43 ps (C6PPPOH) to 78 ps (C12PPPOH) and 99 ps (C18PPPOH). Electrochemical studies were performed for all polymers and the observed oxidation potential for C6PPPOH was higher than that of C12PPPOH and C18PPPOH. In addition, the C12PPPOH has the lowest band gap of DeltaE = 2.59 eV when compared to the 3.1 (C6PPPOH) and 2.61 eV (C18PPPOH) gaps. The optical band gaps estimated from the absorption onset of the polymers are significantly higher than those obtained from electrochemical data. C12PPPOH was chosen for investigating the charge carrier mobility by the time-of-flight (TOF) technique. The observed results also showed negative field dependent values of the drift mobility for the polymer C12PPPOH.  相似文献   

16.
We report the synthesis and photophysical characterization of 7-dimethylamino-3-methyl-N-methyl-d(3)-4-phenylethynylcarbostyril, a chromophore of interest as a rotator in surface-mounted molecular rotors. Measurement of UV-vis absorption and fluorescence spectra, steady state fluorescence and excitation anisotropy, and linear dichroism in the IR and UV-vis permitted a determination of absolute vibrational and electronic transition moment directions in this previously unreported chromophore. The first singlet-singlet absorption and fluorescence are polarized perpendicular to the axle of the rotator. Density functional theory calculations of electronic excitation and vibrational frequencies gave results in very good agreement with those observed. Calculated IR transition moment directions showed rather poor agreement with experiment.  相似文献   

17.
A macrocyclic trichromophore bundle 1 with parallel-aligned dipole moments has been synthesized to study the influence of aggregation and orientation of a nonlinear optical (NLO) chromophore on its optical properties. The linear and nonlinear optical properties of 1 and a single chromophore standard 2 have been studied by UV-vis absorption, fluorescence, solvatochromic spectrometry, and hyper-Rayleigh scattering (HRS). Reduced first-order hyperpolarizability beta, hypsochromic shift, enhanced solvatochromic shifts, and fluorescence quenching for individual chromophores were observed when 1 was compared with 2. Analysis of the data showed that the transition dipole moment changes only slightly when the chromophores are parallel aligned in the bundle architecture. However, the apparent hyperpolarizability of the individual chromophores decreased significantly by about 20%. The reduction in beta for the individual chromophores in 1 is largely due to the hypsochromic shift, i.e., excitation energy increase of the interband (charge-transfer) energy gap and the reduced difference between the ground-state and excited-state dipole moments. The hypsochromic shift and fluorescence quenching are consistent with exciton theory. Possible reasons for the enhanced solvatochromic shift are discussed.  相似文献   

18.
Time-dependent reorientations of resorcinol-based acridinidione (ADR) dyes in glycerol were studied using steady-state and time-resolved fluorescence studies. The difference between fluorescence anisotropy decays recorded at 460 nm when exciting at 250 nm and those obtained when exciting at 394 nm are reported. When exciting at 394 nm, the fluorescence anisotropy decay is bi-exponential, while on exciting at 250 nm a mono-exponential fluorescence anisotropy decay is observed. We interpret this in terms of different directions of the absorption dipole at 394 and 250 nm with the emission dipole respectively, which is experimentally validated and further analysed as a prolate model of ellipsoid.  相似文献   

19.
We previously showed that in N,N‐dimethylformamide (DMF), poly(9‐anthracenylmethyl methacrylate) (PAMMA) and poly(2‐naphthylmethacrylate) selectively disperse semiconducting and metallic single‐walled carbon nanotubes (SWNTs), respectively. We have also proposed a new noncovalent polymer interaction based on photon induced dipole–dipole interaction to account for the metallicity‐based selectivity. In this article, we investigate two other polymethacrylates, that is, poly(benzyl methacrylate) (PBMA) and poly(methylmethacrylate)‐co‐(9‐anthracenylmethyl acrylate) (PMMA‐c‐PAMA) in the light of our previously proposed photon‐induced dipole–dipole interaction. We find that PBMA and PMM‐c‐PAMMA in DMF show no metallicity selectivity. The different selective behavior of the four polymers in DMF manifests the decisive influence of the side aromatic group in determining their metallicity selectivity. The nonpreferential energy transfer from PMMA‐c‐PAMA to SWNTs and the nonoverlap of PBMA fluorescence (in the ultraviolet range) with nanotube absorption account for their nonselectivity of specific nanotube species. Further, the parallel relationship between the diameters of extracted tube species and the affinity between polymers and solvents suggests the leading role of the polymeric conformation on the diameter selectivity. A sufficient (i.e., 2 weeks) standing time of the SWNTs solution after sonication, during which the polymers presumably optimize their conformation to the SWNTs, was found to be essential to the enrichment. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
The synthesis, photochemical and electrochemical properties, and electronic structures of a series of star-shaped ladder-type oligophenylenes Sn (n = 7, 10, 13, 16, 19, and 22), including one multibranched case S19mb, are reported and compared with the linear para-phenylene ladders Rn (n = 2-5 and 8) and the stepladder analogues SFn (n = 10, 16, and 22). The n value refers to the number of π-conjugated phenylene rings. Functionalized isotruxenes are the key synthetic building blocks, and S22 is the largest monodispersed ladder-type oligophenylene known to date. The Sn systems possess the structural rigidity of Rn and the ortho-para phenylene connectivity of SFn. Consequently, Sn represents the first class of branched chromophores with fully two-dimensional conjugation in both ground- and excited-state configurations. Evidences include the excellent linear correlations for the optical 0-0 energies or the first oxidation potentials of Sn and Rn against the reciprocal of their n values, delocalized HOMO and LUMO based on density functional theory calculations, and molecule-like fluorescence anisotropy. The resulting model of effective conjugation plane (ECP) for the two-dimensional π-conjugated systems compliments the concept of effective conjugation length (ECL) for one-dimensional oligomeric systems. Other implications of the observed structure-property relationships are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号