首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the measurement of a low frequency (50-150 Hz) shear wave speed, transient elastography evaluates the Young's modulus in isotropic soft tissues. In this paper, it is shown that a rod source can generate a low frequency polarized shear strain waves. Consequently this technique allows to study anisotropic medium such as muscle. The evidence of the polarization of low frequency shear strain waves is supported by both numeric simulations and experiments. The numeric simulations are based on theoretical Green's functions in isotropic and anisotropic media (hexagonal system). The experiments in vitro led on beef muscle proves the pertinent of this simple anisotropic pattern. Results in vivo on man biceps shows the existence of slow and fast shear waves as predicted by theory.  相似文献   

2.
This paper describes nonlinear shear wave experiments conducted in soft solids with transient elastography technique. The nonlinear solutions that theoretically account for plane and nonplane shear wave propagation are compared with experimental results. It is observed that the cubic nonlinearity implied in high amplitude transverse waves at f(0)=100 Hz results in the generation of odd harmonics 3f(0), 5f(0). In the case of the nonlinear interaction between two transverse waves at frequencies f(1) and f(2), the resulting harmonics are f(i)+/-2f(j)(i,j=1,2). Experimental data are compared to numerical solutions of the modified Burgers equation, allowing an estimation of the nonlinear parameter relative to shear waves. The definition of this combination of elastic moduli (up to fourth order) can be obtained using an energy development adapted to soft solid. In the more complex situation of nonplane shear waves, the quadratic nonlinearity gives rise to more usual harmonics, at sum and difference frequencies, f(i)+/-f(j). All components of the field have to be taken into account.  相似文献   

3.
组织力学特性与其生理病理变化过程密切相关.因此,对组织力学特性的分析有望为疾病诊断提供重要依据.超声弹性成像可以定量分析组织的剪切模量,但在检测的特异性和灵敏度等方面仍存在局限性.针对这一问题,该文发展一种磁纳米粒子介导的靶向剪切波弹性成像新方法.该方法是基于磁纳米粒子在脉冲磁场作用下产生磁致振动,从而导致周围组织的剪...  相似文献   

4.
The method and results of measuring the shear elastic modulus of a rubberlike polymer by the deformation of a plane elastic layer are described. For shear deformations not exceeding 0.5 of the layer thickness, the shear modulus is constant and its value is in agreement with the value determined by pressing a rigid ball against the polymer layer. For deformations exceeding 0.5 of the layer thickness, the stress-strain dependence becomes nonlinear. The coefficient of shear viscosity is determined from the shear wave form generated by focused ultrasound in a homogeneous polymer sample.  相似文献   

5.
Several methods have been proposed to estimate the viscoelastic properties of soft biological tissues using forced low-frequency vibrations (10-500 Hz). Those methods are based on the measurement of phase velocity of the shear waves (approximately 5 m/s). It is shown in this article that the measurements of velocity as well as attenuation are subjected to biases. These biases are related to reflected waves created at boundaries, to the nonnegligible size of the piston source which causes diffraction effects and to the influence of a low-frequency compressional wave. Indeed, a theoretical analysis of the field radiated by a point source explains how mechanical vibrations of a piston generate a shear wave with a longitudinal component and how this component can interfere with a low-frequency compressional wave. However, by using a low-frequency transient excitation, these biases can be avoided. Then the precise numerical values of elasticity and viscosity can be deduced. Experiments in phantoms and beef muscles are shown. Moreover, a relative hardness imaging of a phantom composed of two media with different elasticities is presented.  相似文献   

6.
The effect of an external polarizing electric field on the shear wave propagation in a centrosymmetric crystal with electrostriction, whose body is penetrated with parallel cylindrical cavities (pores), is considered. The cavities are distributed throughout the crystal at random and with a low density. The waves are assumed to be polarized along the cavity generatrices, and the wave propagation occurs in the elastic isotropy plane, which is orthogonal to the cavity axes. The external field is assumed to be axial. Possibility of controlling the propagation of shear waves by the polarizing field is demonstrated for the case of metallized cavity surfaces.  相似文献   

7.
The influence of soft tissues coupled with cortical bones on precision of quantitative ultrasound (QUS) has been an issue in the clinical bone assessment in conjunction with the use of ultrasound. In this study, the effect arising from soft tissues on propagation characteristics of guided ultrasound waves in bones was investigated using tubular Sawbones phantoms covered with a layer of mimicked soft tissue of different thicknesses and elastic moduli, and an in vitro porcine femur in terms of the axial transmission measurement. Results revealed that presence of soft tissues can exert significant influence on the propagation of ultrasound waves in bones, leading to reduced propagation velocities and attenuated wave magnitudes compared with the counterparts in a free bone in the absence of soft tissues. However such an effect is not phenomenally dependent on the variations in thickness and elastic modulus of the coupled soft tissues, making it possible to compensate for the coupling effect regardless of the difference in properties of the soft tissues. Based on an in vitro calibration, this study proposed quantitative compensation for the effect of soft tissues on ultrasound waves in bones, facilitating development of high-precision QUS.  相似文献   

8.
One of the stress sources that can be used in dynamic elastography imaging methods is the acoustic radiation force. However, displacements of the medium induced by this stress field are generally not fully understood in terms of spatial distribution and temporal evolution. A model has been developed based on the elastodynamic Green's function describing the different acoustic waves generated by focused ultrasound. The function is composed of three terms: two far-field terms, which correspond to a purely longitudinal compression wave and a purely transverse shear wave, and a coupling near-field term which has a longitudinal component and a transverse component. For propagation distances in the shear wavelength range, the predominant term is the near field term. The displacement duration corresponds to the propagation duration of the shear wave between the farthest source point and the observation point. This time therefore depends on the source size and the local shear modulus of the tissue. Evolution of the displacement/time curve profile, which is directly linked to spatial and temporal source profiles, is computed at different radial distances, for different durations of force applications and different shear elastic coefficients. Experimental results performed with an optical interferometric method in a homogeneous tissue-mimicking phantom agreed with the theoretical profiles.  相似文献   

9.
In shear wave elasticity imaging (SWEI), mechanical excitation within the tissue is remotely generated using radiation force of focused ultrasound. The induced shear strain is subsequently detected to estimate visco-elastic properties of tissue and thus aid diagnostics. In this paper, the mechanical response of tissue to radiation force was detected using a modified ultrasound Doppler technique. The experiments were performed on tissue mimicking and tissue containing phantoms using a commercial diagnostic scanner. This scanner was modified to control both the pushing and probing beams. The pushing beam was fired repetitively along a single direction while interlaced probing beams swept the surrounding region of interest to detect the induced motion. The detectability of inhomogeneous inclusions using ultrasonic Doppler SWEI method has been demonstrated in this study. The displacement fields measured in elastic phantoms clearly reveal the oscillatory nature of the mechanical relaxation processes in response to impulsive load due to the boundary effects. This relaxation dynamics was also present in cooked muscle tissue, but was not detected in more viscous and less elastic phantom and raw muscles. Presence of a local heterogeneity in the vicinity of the focal region of the pushing beam results in generation of a standing wave field pattern which is manifested in the oscillatory response of the excited region of the tissue. There has been made an assumption that dynamic characteristics of the relaxation process may be used for visualization of inhomogeneities.  相似文献   

10.
It is now accepted that an effective way to investigate the elastic properties of soft tissues is to generate a localized transient acoustic radiation force and to follow the associated displacements in the time/space domain. Shear waves induced by this stress field are particularly interesting in this kind of medium because they are governed by the shear elastic modulus mu, which is directly linked to the Young modulus, and spatial distribution and temporal evolution of the transient motion induced must therefore be obtained in detail. We report here a model based on the elastodynamic Green's function formalism to describe these displacements. 3D simulation of radiation force in homogenous elastic media was performed and the displacement curves computed at different radial distances for different temporal force profiles. Amplitude and duration of displacement were found to be reliable parameters to characterize the elastic properties of the medium. Experimental measurements were performed in a homogeneous agar-gelatin tissue-mimicking phantom, and two transducers were used to generate the radiation force and follow the induced displacements. Displacements obtained from different lateral locations around the applied force axis were then used to reconstruct the shear-wave propagation in a scan plane as a function of time. The experimental displacements/curves agreed with the theoretical profiles obtained by the elastodynamic Green's function formalism.  相似文献   

11.
Magnetic resonance elastography (MRE) is a technique for quantifying the acoustic response of biological tissues to propagating waves applied at low frequencies in order to evaluate mechanical properties. Application-specific MRE drivers are typically required to effectively deliver shear waves within the tissue of interest. Surface MRE drivers with transversely oriented vibrations have often been used to directly generate shear waves. These drivers may have disadvantages in certain applications, such as poor penetration depth and inflexible orientation. Therefore, surface MRE drivers with longitudinally oriented vibrations are used in some situations. The purpose of this work was to investigate and optimize a longitudinal driver system for MRE applications. A cone-like hemispherical distribution of shear waves being generated by these drivers and the wave propagation being governed by diffraction in the near field are shown. Using MRE visualization of the vector displacement field, we studied the properties of the shear wave field created by longitudinal MRE drivers of various sizes to identify optimum shear wave imaging planes. The results offer insights and improvements in both experimental design and imaging plane selection for 2-D MRE data acquisition.  相似文献   

12.
Low frequency (61 Hz) shear wave speeds have been measured in viscoelastic wormlike micellar (WM) fluids for a concentration range of 20/12-160/96 mM CTAB/NaSAL. The strain induced birefringence of the WM fluids was exploited to optically track the shear pulse using crossed polarizing filters and high speed video. It was found that shear speed increases roughly linearly with concentration at a rate of 3.5 mm s(-1) mM(-1) CTAB. Further, comparison with elastic and loss moduli obtained from rheology data show that shear wave propagation is dominated by the elastic modulus for this frequency range.  相似文献   

13.
F. Mirzoev 《Technical Physics》2002,47(10):1258-1262
A model of nonlinear longitudinal wave propagation in a solid with quadratic nonlinearity of an elastic continuum exposed to laser impulses is developed in view of the interaction between the strain field and the field of point defects. The influence of the generation and recombination of laser-induced defects on the propagation of an elastic strain wave is analyzed. The existence of a nonlinear elastic shock wave of low intensity is revealed in the system and its structure is studied. The estimations of the depth and velocity of the wave front are performed. The contributions due to the interaction of the strain field and the field of defects to both a linear elastic modulus and the dispersion parameters of a lattice are found.  相似文献   

14.
A theoretical investigation of the nonlinear interaction between an acoustic plane wave and an interface formed by two rough, nonconforming surfaces in partial contact is presented. The macroscopic elastic properties of such a nonlinear interface are derived from micromechanical models accounting for the elastic interaction that is characteristic of spherical bodies in contact. These results are used to formulate set of boundary conditions for the acoustic field, which are to be enforced at the imperfect interface. The scattering problem is solved for plane wave incidence by using a simple perturbation approach and the harmonic balance method. Sample results are presented for arbitrary wave polarization and angle of incidence. The relative magnitude of the nonlinear signals and their potential use toward the nondestructive evaluation of imperfect interfaces are assessed. In particular, attention is drawn to the enhanced nonlinear response of an interface insonified by a shear vertical wave in the neighborhood of the longitudinal critical angle. The motivation for this investigation is provided by the need to develop nondestructive methods to detect and localize small, partially closed cracks in metals with coarse microstructures.  相似文献   

15.
16.
The authors have recently demonstrated the shear wave interference patterns created by two coherent vibration sources imaged with the vibration sonoelastography technique. If the two sources vibrate at slightly different frequencies omega and omega+deltaomega, respectively, the interference patterns move at an apparent velocity of (deltaomega/2omega)upsilon(shear), where upsilon(shear) is the shear wave speed. We name the moving interference patterns "crawling waves." In this paper, we extend the techniques to inspect biomaterials with nonuniform stiffness distributions. A relationship between the local crawling wave speed and the local shear wave velocity is derived. In addition, a modified technique is proposed whereby only one shear wave source propagates shear waves into the medium at the frequency omega. The ultrasound probe is externally vibrated at the frequency omega-deltaomega. The resulting field estimated by the ultrasound (US) scanner is proven to be an exact representation of the propagating shear wave field. The authors name the apparent wave motion "holography waves." Real-time video sequences of both types of waves are acquired on various inhomogeneous elastic media. The distribution of the crawling/holographic wave speeds are estimated. The estimated wave speeds correlate with the stiffness distributions.  相似文献   

17.
A particular analytical solution to the nonintegrable problem of plane electromagnetic wave propagation through an isotropic gyrotropic nonlinear medium is found in the form of elliptically polarized breather. The intensity ratio for the circularly polarized components of this wave, which remains constant during propagation, can be used to determine the ratio of local and nonlocal nonlinear susceptibilities describing the Kerr nonlinearity and its spatial dispersion.  相似文献   

18.
I.IntroductionUltrasonicimaginghasbcenwide1yusedinthcfie1dofclinicaldiagnosis,becauseitcanvisualizethetissuetharacterizationandinternalstructureofbiologicalobjectsbyacousticwave.Usingconventionalultrasonicimagingtechnique,theimagesofacousticlinearparameterssuchassoundve1ocity,acousticimpedenccandattenuationcoefficientmaybeobtained.Thesehavebecometheeffectivemethodsofu1trasonicdiagnosis.How-ever,inordertoobscrvctheearlystageofcanccr,weintendtoobtainmoreaccurateandmorecompleteinformationaboutth…  相似文献   

19.
提出了一种磁流变液构成的类梯度结构,并通过理论建模、数值计算和实验研究了该结构的振动传递特性.磁流变液在磁场作用下具有液固转换的特殊理化性质,而液固转换过程就是磁流变液的振动传递阻抗变化过程.因此,基于磁流变液的这一特性,通过控制磁场,构建了类梯度结构.基于弹性波传递的一维波动方程,建立了垂直入射的弹性波在类梯度结构中传递的波动方程.然后,使用连续介质的离散化方法和传递矩阵法进行求解,得到振级落差的表达式,对其进行数值计算,分析类梯度结构的振级落差随弹性波频率和磁场强度的变化趋势.最后,对类梯度结构的振动传递特性进行了实验研究,分析了磁场强度对类梯度结构振动传递特性的影响.研究结果表明,与均匀场作用的磁流变液相比,类梯度结构对弹性波的衰减效果更好,且该结构具备良好的可调控特性.  相似文献   

20.
The exact nonlinear dispersion relation for circular polarized plane wave propagating along magnetic field in a ferromagnetic system is derived. It is pointed out that the right polarized wave can be modulationally unstable and may evolve into a soliton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号