共查询到20条相似文献,搜索用时 15 毫秒
1.
Yamanaka T Kawasaki M Hurley MD Wallington TJ Schneider WF Bruce J 《Physical chemistry chemical physics : PCCP》2007,9(31):4211-4217
FTIR smog chamber techniques and ab initio calculations have been used to investigate the kinetics and mechanism of the reaction of Cl atoms with i-propanol in 700 Torr of N(2) at 296 K. The reaction is observed to proceed with a rate constant of k(1) = (8.28 +/- 0.97) x 10(-11) cm(3) molecule(-1) s(-1) and gives CH(3)C(OH)CH(3) and CH(3)CH(OH)CH(2) radicals in yields of 85 +/- 7 and 15 +/- 7%, respectively. Calculations indicate that abstraction of the secondary H can proceed through a lower energy pathway than the primary. Rapid decomposition of the chlorination product CH(3)CCl(OH)CH(3) complicates its direct detection, likely due to heterogeneous chemistry. IR spectra for the chlorides CH(3)CCl(OH)CH(3) and CH(3)CH(OH)CH(2)Cl were inferred experimentally and assignments confirmed via comparison with ab initio computed spectra. 相似文献
2.
The trithionate-chlorine dioxide reaction has been studied spectrophotometrically in a slightly acidic medium at 25.0 ± 0.1 °C in acetate/acetic acid buffer monitoring the decay of chlorine dioxide at constant ionic strength (I = 0.5 M) adjusted by sodium perchlorate. We found that under our experimental conditions two limiting stoichiometries exist and the pH, the concentration of the reactants, and even the concentration of chloride ion affects the actual stoichiometry of the reaction that can be augmented by an appropriate linear combination of these limiting processes. It is also shown that although the formal kinetic order of trithionate is strictly one that of chlorine dioxide varies between 1 and 2, depending on the actual chlorine dioxide excess and the pH. Moreover, the otherwise sluggish chloride ion, which is also a product of the reaction, slightly accelerates the initial rate of chlorine dioxide consumption and may therefore act as an autocatalyst. In addition to that, overshoot-undershoot behavior is also observed in the [(·)ClO(2)]-time curves in the presence of chloride ion at chlorine dioxide excess. On the basis of the experiments, a 13-step kinetic model with 6 fitted kinetic parameter is proposed by nonlinear parameter estimation. 相似文献
3.
The kinetic and mechanism of the reaction Cl + HO2 → products (1) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expression for the total rate constant was obtained either from the kinetics of HO2 consumption in excess of Cl atoms or from the kinetics of Cl in excess of HO2: k1 = (3.8 ± 1.2) × 10?11 exp[(40 ± 90)/T] cm3 molecule?1 s?1, where uncertainties are 95% confidence limits. The temperature‐independent value of k1 = (4.4 ± 0.6) × 10?11 cm3 molecule?1 s?1 at T = 230–360 K, which can be recommended from this study, agrees well with most recent studies and current recommendations. Both OH and ClO were detected as the products of reaction (1) and the rate constant for the channel forming these species, Cl + HO2 → OH + ClO (1b), has been determined: k1b = (8.6 ± 3.2) × 10?11 exp[?(660 ± 100)/T] cm3 molecule?1 s?1 (with k1b = (9.4 ± 1.9) × 10?12 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 317–327, 2001 相似文献
4.
M. P. Sulbaek Andersen D. A. Ponomarev O. J. Nielsen M. D. Hurley T. J. Wallington 《Chemical physics letters》2001,350(5-6):423-426
Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms with iodobenzene (C6H5I) in 20–700 Torr of N2, air, or O2 diluent at 296 K. The reaction proceeds with a rate constant k(Cl+C6H5I)=(3.3±0.7)×10−11 cm3 molecule−1 s−1 to give chlorobenzene (C6H5Cl) in a yield which is indistinguishable from 100%. The title reaction proceeds via a displacement mechanism (probably addition followed by elimination). 相似文献
5.
Oxygen atoms are detected by NO + O + M chemiluminescence as a secondary product of the reaction between Cl and O3. The mechanism Cl + O3 → ClO + O2(1Σ+g), O2(1Σ+g) + O3 → O2 + O2 + O is proposed to account for the oxygen atom formation. The branching ratio to the O2(1Σ+g) product in the reaction of Cl with O3 is estimated to be in the range (0.1–0.5) x 10?2. 相似文献
6.
Zhao Z Huskey DT Olsen KJ Nicovich JM McKee ML Wine PH 《Physical chemistry chemical physics : PCCP》2007,9(31):4383-4394
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of atomic chlorine with pyridine (C(5)H(5)N) as a function of temperature (215-435 K) and pressure (25-250 Torr) in nitrogen bath gas. At T> or = 299 K, measured rate coefficients are pressure independent and a significant H/D kinetic isotope effect is observed, suggesting that hydrogen abstraction is the dominant reaction pathway. The following Arrhenius expression adequately describes all kinetic data at 299-435 K for C(5)H(5)N: k(1a) = (2.08 +/- 0.47) x 10(-11) exp[-(1410 +/- 80)/T] cm(3) molecule(-1) s(-1) (uncertainties are 2sigma, precision only). At 216 K < or =T< or = 270 K, measured rate coefficients are pressure dependent and are much faster than computed from the above Arrhenius expression for the H-abstraction pathway, suggesting that the dominant reaction pathway at low temperature is formation of a stable adduct. Over the ranges of temperature, pressure, and pyridine concentration investigated, the adduct undergoes dissociation on the time scale of our experiments (10(-5)-10(-2) s) and establishes an equilibrium with Cl and pyridine. Equilibrium constants for adduct formation and dissociation are determined from the forward and reverse rate coefficients. Second- and third-law analyses of the equilibrium data lead to the following thermochemical parameters for the addition reaction: Delta(r)H = -47.2 +/- 2.8 kJ mol(-1), Delta(r)H = -46.7 +/- 3.2 kJ mol(-1), and Delta(r)S = -98.7 +/- 6.5 J mol(-1) K(-1). The enthalpy changes derived from our data are in good agreement with ab initio calculations reported in the literature (which suggest that the adduct structure is planar and involves formation of an N-Cl sigma-bond). In conjunction with the well-known heats of formation of atomic chlorine and pyridine, the above Delta(r)H values lead to the following heats of formation for C(5)H(5)N-Cl at 298 K and 0 K: Delta(f)H = 216.0 +/- 4.1 kJ mol(-1), Delta(f)H = 233.4 +/- 4.6 kJ mol(-1). Addition of Cl to pyridine could be an important atmospheric loss process for pyridine if the C(5)H(5)N-Cl product is chemically degraded by processes that do not regenerate pyridine with high yield. 相似文献
7.
The reaction of atomic chlorine with neopentane was studied in the gas phase with the Very Low Pressure Reactor (VLPR) technique over the temperature range 273–333 K. The absolute reaction rate was found to be temperature-independent, and the average rate constant was k1 = (1.11± 0.13) × 10?10 cm3 molecule?1 s?1 within experimental error. The reaction proceeds via metathesis of a hydrogen atom with no activation energy, and leads to the formation of HCl and neopentyl radical. © 1995 John Wiley & Sons, Inc. 相似文献
8.
The use of iodine monochloride (ICl) as a thermal source of chlorine atoms in known concentration is discussed with particular reference to the suppression, by large excesses of iodine, of the chain processes normally associated with chlorine atom reactions. The kinetics and mechanism of the reaction of ICl with hydrogen are presented in a study covering the temperature range 205–337°C, and the pressure ranges: ICl, 6–20 torr; I2, 3–13 torr; and H2, 9–520 torr. The reaction, followed spectrophotometrically in a static system, is shown to be homogeneous, first order in ICl and in H2, and inverse half-order in I2, over several half-lifetimes of the ICl, yielding HCl as the sole product. The rate data obtained in this work for the reaction are combined with the critically evaluated results of other workers in an Arrhenius plot covering the temperature range 286–730°C, and three orders-of-magnitude in the rate constant, yielding the results, log k1/(1/mole sec) = 10.68–5.26/θ, where θ = 2.303RT in kcal/mole. This value of k1 is lower by a factor of about two than that proposed in a recent review by Fettis and Knox, and is clearly at variance by a factor of two or more with the most recent data of Clyne and Stedman. 相似文献
9.
T. J. Wallington J. C. Ball A. M. Straccia M. D. Hurley E. W. Kaiser M. Dill W. F. Schneider M. Bilde 《国际化学动力学杂志》1996,28(8):627-635
The kinetics and mechanism of the gas-phase reaction of Cl atoms with CH2CO have been studied with a FTIR spectrometer/smog chamber apparatus. Using relative rate methods the rate of reaction of Cl atoms with ketene was found to be independent of total pressure over the range 1–700 torr of air diluent with a rate constant of (2.7 ± 0.5) × 10−10 cm3 molecule−1 s−1 at 295 K. The reaction proceeds via an addition mechanism to give a chloroacetyl radical (CH2ClCO) which has a high degree of internal excitation and undergoes rapid unimolecular decomposition to give a CH2Cl radical and CO. Chloroacetyl radicals were also produced by the reaction of Cl atoms with CH2ClCHO; no decomposition was observed in this case. The rates of addition reactions are usually pressure dependent with the rate increasing with pressure reflecting increased collisional stabilization of the adduct. The absence of such behavior in the reaction of Cl atoms with CH2CO combined with the fact that the reaction rate is close to the gas kinetic limit is attributed to preferential decomposition of excited CH2ClCO radicals to CH2Cl radicals and CO as products as opposed to decomposition to reform the reactants. As part of this work ab initio quantum mechanical calculations (MP2/6-31G(d,p)) were used to derive ΔfH298(CH2ClCO) = −(5.4 ± 4.0) kcal mol−1. © 1996 John Wiley & Sons, Inc. 相似文献
10.
The kinetics of the reaction of O(3P) atoms with acetone were investigated using fast flow methods. The reaction was studied over a temperature range of 298 to 478°K. The specific rate constant obtained was (1.9 ± 0.4) × 1012 exp(—5040 ± 180/1.987 T) cm3/mol·sec. The observation of a sizable primary H/D kinetic isotope effect in comparing rates of CH3COCH3 and CD3COCD3 led to the conclusion that the major reaction channel involves H atom abstraction, namely, The rather low Arrhenius preexponential factor obtained in this reaction is compared and contrasted with those reported for other reactions of O(3P) with low molecular weight compounds. 相似文献
11.
Nicovich JM Parthasarathy S Pope FD Pegus AT McKee ML Wine PH 《The journal of physical chemistry. A》2006,110(21):6874-6885
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of chlorine atoms with dimethyl sulfoxide (CH3S(O)CH3; DMSO) as a function of temperature (270-571 K) and pressure (5-500 Torr) in nitrogen bath gas. At T = 296 K and P > or = 5 Torr, measured rate coefficients increase with increasing pressure. Combining our data with literature values for low-pressure rate coefficients (0.5-3 Torr He) leads to a rate coefficient for the pressure independent H-transfer channel of k1a = 1.45 x 10(-11) cm3 molecule(-1) s(-1) and the following falloff parameters for the pressure-dependent addition channel in N2 bath gas: k(1b,0) = 2.53 x 10(-28) cm6 molecule(-2) s(-1); k(1b,infinity) = 1.17 x 10(-10) cm3 molecule(-1) s(-1), F(c) = 0.503. At the 95% confidence level, both k1a and k1b(P) have estimated accuracies of +/-30%. At T > 430 K, where adduct decomposition is fast enough that only the H-transfer pathway is important, measured rate coefficients are independent of pressure (30-100 Torr N2) and increase with increasing temperature. The following Arrhenius expression adequately describes the temperature dependence of the rate coefficients measured at over the range 438-571 K: k1a = (4.6 +/- 0.4) x 10(-11) exp[-(472 +/- 40)/T) cm3 molecule(-1) s(-1) (uncertainties are 2sigma, precision only). When our data at T > 430 K are combined with values for k1a at temperatures of 273-335 K that are obtained by correcting reported low-pressure rate coefficients from discharge flow studies to remove the contribution from the pressure-dependent channel, the following modified Arrhenius expression best describes the derived temperature dependence: k1a = 1.34 x 10(-15)T(1.40) exp(+383/T) cm3 molecule(-1) s(-1) (273 K < or = T < or = 571 K). At temperatures around 330 K, reversible addition is observed, thus allowing equilibrium constants for Cl-DMSO formation and dissociation to be determined. A third-law analysis of the equilibrium data using structural information obtained from electronic structure calculations leads to the following thermochemical parameters for the association reaction: delta(r)H(o)298 = -72.8 +/- 2.9 kJ mol(-1), deltaH(o)0 = -71.5 +/- 3.3 kJ mol(-1), and delta(r)S(o)298 = -110.6 +/- 4.0 J K(-1) mol(-1). In conjunction with standard enthalpies of formation of Cl and DMSO taken from the literature, the above values for delta(r)H(o) lead to the following values for the standard enthalpy of formation of Cl-DMSO: delta(f)H(o)298 = -102.7 +/- 4.9 kJ mol(-1) and delta(r)H(o)0 = -84.4 +/- 5.8 kJ mol(-1). Uncertainties in the above thermochemical parameters represent estimated accuracy at the 95% confidence level. In agreement with one published theoretical study, electronic structure calculations using density functional theory and G3B3 theory reproduce the experimental adduct bond strength quite well. 相似文献
12.
A. M. Efremov A. V. Yudina D. B. Murin O. S. Dement’ev V. I. Svettsov 《High Energy Chemistry》2013,47(2):57-61
The mechanisms of the influence of the initial composition of an HCl-Ar mixture on the kinetics and concentration of chlorine atoms in direct-current glow discharge plasma have been studied. It has been found that an increase in the Ar content at a constant total gas pressure leads to an increase in the degree of dissociation of HCl due to an increase in the electron impact dissociation efficiency. 相似文献
13.
Absolute (flash photolysis) and relative (FTIR-smog chamber and GC) rate techniques were used to study the gas-phase reactions of Cl atoms with C2H6 (k1), C3H8 (k3), and n-C4H10 (k2). At 297 ± 1 K the results from the two relative rate techniques can be combined to give k2/k1 = (3.76 ± 0.20) and k3/k1 = (2.42 ± 0.10). Experiments performed at 298–540 K give k2/k1 = (2.0 ± 0.1)exp((183 ± 20)/T). At 296 K the reaction of Cl atoms with C3H8 produces yields of 43 ± 3% 1-propyl and 57 ± 3% 2-propyl radicals, while the reaction of Cl atoms with n-C4H10 produces 29 ± 2% 1-butyl and 71 ± 2% 2-butyl radicals. At 298 K and 10–700 torr of N2 diluent, 1- and 2-butyl radicals were found to react with Cl2 with rate coefficients which are 3.1 ± 0.2 and 2.8 ± 0.1 times greater than the corresponding reactions with O2. A flash-photolysis technique was used to measure k1 = (5.75 ± 0.45) × 10−11 and k2 = (2.15 ± 0.15) × 10−10 cm3 molecule−1 s−1 at 298 K, giving a rate coefficient ratio k2/k1 = 3.74 ± 0.40, in excellent agreement with the relative rate studies. The present results are used to put other, relative rate measurements of the reactions of chlorine atoms with alkanes on an absolute basis. It is found that the rate of hydrogen abstraction from a methyl group is not influenced by neighboring groups. The results are used to refine empirical approaches to predicting the reactivity of Cl atoms towards hydrocarbons. Finally, relative rate methods were used to measure rate coefficients at 298 K for the reaction of Cl atoms with 1- and 2-chloropropane and 1- and 2-chlorobutane of (4.8 ± 0.3) × 10−11, (2.0 ± 0.1) × 10−10, (1.1 ± 0.2) × 10−10, and (7.0 ± 0.8) × 10−11 cm3 molecule−1 s−1, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 43–55, 1997. 相似文献
14.
15.
John J. Orlando 《国际化学动力学杂志》1999,31(7):515-524
Rate coefficients for the reaction of Cl atoms with CH3Cl (k1), CH2Cl2 (k2), and CHCl3 (k3) have been determined over the temperature range 222–298 K using standard relative rate techniques. These data, when combined with evaluated data from previous studies, lead to the following Arrhenius expressions (all in units of cm3 molecule−1 s−1): k1 = (2.8 ± 0.3) × 10−11 exp(−1200 ± 150/T); k2 = (1.5 ± 0.2) × 10−11 exp(−1100 ± 150/T); k3 = (0.48 ± 0.05) × 10−11 exp(−1050 ± 150/T). Values for k1 are in substantial agreement with previous measurements. However, while the room temperature values for k2 and k3 agree with most previous data, the activation energies for these rate coefficients are substantially lower than previously recommended values. In addition, the mechanism of the oxidation of CH2Cl2 has been studied. The dominant fate of the CHCl2O radical is decomposition via Cl‐atom elimination, even at the lowest temperatures studied in this work (218 K). However, a small fraction of the CHCl2O radicals are shown to react with O2 at low temperatures. Using an estimated value for the rate coefficient of the reaction of CHCl2O with O2 (1 × 10−14 cm3 molecule−1 s−1), the decomposition rate coefficient for CHCl2O is found to be about 4 × 106 s−1 at 218 K, with the barrier to its decomposition estimated at 6 kcal/mole. As part of this work, the rate coefficient for Cl atoms with HCOCl was also been determined, k7 = 1.4 × 10−11 exp(−885/T) cm3 molecule−1 s−1, in agreement with previous determinations. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 515–524, 1999 相似文献
16.
17.
The rate constant of the reaction between iodomethane and chlorine atoms at 323 K, measured by the resonance florescence method
under jet stream conditions as the iodine atom yield, is k
1I = (2.9±0.6) × 10−12 cm3 molecule−1 s−1. It is demonstrated experimentally that this reaction takes place mainly on the reactor wall. 相似文献
18.
19.
The kinetics and mechanism of the following reactions have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium, using the discharge‐flow mass spectrometric method: 1a : (1a) 1b : (1b) The following Arrhenius expression for the total rate constant was obtained from the kinetics of OH consumption in excess of ClO radical, produced in the Cl + O3 reaction either in excess of Cl atoms or ozone: k1 = (6.7 ± 1.8) × 10?12 exp {(360 ± 90)/T} cm3 molecule?1 s?1 (with k1 = (2.2 ± 0.4) × 10?11 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits and include estimated systematic errors. The value of k1 is compared with those from previous studies and current recommendations. HCl was detected as a minor product of reaction (1) and the rate constant for the channel forming HCl (reaction (1b)) has been determined from the kinetics of HCl formation at T = 230–320 K: k1b = (9.7 ± 4.1) × 10?14 exp{(600 ± 120)/T} cm3 molecule?1 s?1 (with k1b = (7.3 ± 2.2) × 10?13 cm3 molecule?1 s?1 and k1b/k1 = 0.035 ± 0.010 at T = 298 K), where uncertainties represent 95% confidence limits. In addition, the measured kinetic data were used to derive the enthalpy of formation of HO2 radicals: Δ Hf,298(HO2) = 3.0 ± 0.4 kcal mol?1. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 587–599, 2001 相似文献
20.
The reaction between H and C3H5 has been studied at 291 K. Exciplex laser flash photolysis at 193.3 nm of hexa-1,5-diene-He mixtures generated both H and C3H5 ([H] ? [C3H5]), which were detected in time-resolved mode by resonance fluorescence and absorption spectroscopy, respectively. Rate coefficients are presented at four pressures in the range 98 ? P/torr ? 400; no clear pressure-dependence is found in this range of pressures and the mean rate coefficient is (2.8 ± 1.0) × 10?10 cm3 molecule?1 s?1. Calculations based on the Troe factorization method confirm that this reaction is near its high-pressure limit under the experimental conditions. 相似文献