首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The voice source is dominated by aeroacoustic sources downstream of the glottis. In this paper an investigation is made of the contribution to voiced speech of secondary sources within the glottis. The acoustic waveform is ultimately determined by the volume velocity of air at the glottis, which is controlled by vocal fold vibration, pressure forcing from the lungs, and unsteady backreactions from the sound and from the supraglottal air jet. The theory of aerodynamic sound is applied to study the influence on the fine details of the acoustic waveform of "potential flow" added-mass-type glottal sources, glottis friction, and vorticity either in the glottis-wall boundary layer or in the portion of the free jet shear layer within the glottis. These sources govern predominantly the high frequency content of the sound when the glottis is near closure. A detailed analysis performed for a canonical, cylindrical glottis of rectangular cross section indicates that glottis-interior boundary/shear layer vortex sources and the surface frictional source are of comparable importance; the influence of the potential flow source is about an order of magnitude smaller.  相似文献   

2.
This paper ranks the importance of unsteady aerodynamic mechanisms in glottal flow. Particular emphasis is given to separation point motion, acceleration of glottal airflow by vocal fold motion, and viscous blockage. How nondimensional parameters such as the Reynolds, Strouhal, and Womersley numbers help in this ranking is also addressed. An equation of motion is derived which includes terms explicitly describing the effects of interest, assuming (1) a symmetrical glottis, (2) zero pressure recovery downstream of the vocal folds, and (3) a quasisteady glottal jet. Estimating the order of magnitude of the terms in this equation, it is shown that the flow is characterized by two temporal regimes: (1) a flow initiation/shutoff regime where local unsteady acceleration and wall motion dominate, and (2) a "quasisteady" regime where the flow is dominated by convective acceleration. In the latter case, separation point motion and viscous blockage are shown to be out of phase with motion of the vocal folds, thereby impacting the shape of the glottal volume flow waveform. The analysis suggests that glottal flow may be considered quasisteady only insofar as traditional assumptions concerning glottal jet behavior can be confirmed.  相似文献   

3.
Efficiency of automatic recognition of male and female voices based on solving the inverse problem for glottis area dynamics and for waveform of the glottal airflow volume velocity pulse is studied. The inverse problem is regularized through the use of analytical models of the voice excitation pulse and of the dynamics of the glottis area, as well as the model of one-dimensional glottal airflow. Parameters of these models and spectral parameters of the volume velocity pulse are considered. The following parameters are found to be most promising: the instant of maximum glottis area, the maximum derivative of the area, the slope of the spectrum of the glottal airflow volume velocity pulse, the amplitude ratios of harmonics of this spectrum, and the pitch. On the plane of the first two main components in the space of these parameters, an almost twofold decrease in the classification error relative to that for the pitch alone is attained. The male voice recognition probability is found to be 94.7%, and the female voice recognition probability is 95.9%.  相似文献   

4.
A finite-volume computational model that solves the time-dependent glottal airflow within a forced-oscillation model of the glottis was employed to study glottal flow separation. Tracheal input velocity was independently controlled with a sinusoidally varying parabolic velocity profile. Control parameters included flow rate (Reynolds number), oscillation frequency and amplitude of the vocal folds, and the phase difference between the superior and inferior glottal margins. Results for static divergent glottal shapes suggest that velocity increase caused glottal separation to move downstream, but reduction in velocity increase and velocity decrease moved the separation upstream. At the fixed frequency, an increase of amplitude of the glottal walls moved the separation further downstream during glottal closing. Increase of Reynolds number caused the flow separation to move upstream in the glottis. The flow separation cross-sectional ratio ranged from approximately 1.1 to 1.9 (average of 1.47) for the divergent shapes. Results suggest that there may be a strong interaction of rate of change of airflow, inertia, and wall movement. Flow separation appeared to be "delayed" during the vibratory cycle, leading to movement of the separation point upstream of the glottal end only after a significant divergent angle was reached, and to persist upstream into the convergent phase of the cycle.  相似文献   

5.
Large eddy simulation (LES)-based computational aeroacoustics techniques were applied to a static model of the human glottis, idealized here as a planar channel with an orifice, to study flow-acoustic interactions related to speech. Rigid models of both converging and diverging glottal passages, each featuring a 20 deg included angle and a minimal glottal diameter of 0.04 cm, with an imposed transglottal pressure of 15 cm H2O, were studied. The Favre-filtered compressible Navier-Stokes equations were integrated for this low-Mach-number flow using an additive semi-implicit Runge-Kutta method and a high-order compact finite-difference scheme with characteristic-based nonreflecting boundary conditions and a multiblock approach. Flow asymmetries related to the Coanda effect and transition to turbulence, as well as the far-field sound, were captured. Acoustic-analogy-based far-field sound predictions were compared with direct simulations and showed that dipole sources, arising from unsteady flow forces exerted on the glottal walls, are primarily responsible for the tonal sound observed in the divergent glottis case.  相似文献   

6.
A synthetic two-layer, self-oscillating, life-size vocal fold model was used to study the influence of the vocal tract and false folds on the glottal jet. The model vibrated at frequencies, pressures, flow rates, and amplitudes consistent with human phonation, although some differences in behavior between the model and the human vocal folds are noted. High-speed images of model motion and flow visualization were acquired. Phase-locked ensemble-averaged glottal jet velocity measurements using particle image velocimetry (PIV) were acquired with and without an idealized vocal tract, with and without false folds. PIV data were obtained with varying degrees of lateral asymmetric model positioning. Glottal jet velocity magnitudes were consistent with those measured using excised larynges. A starting vortex was observed in all test cases. The false folds interfered with the starting vortex, and in some cases vortex shedding from the false folds was observed. In asymmetric cases without false folds, the glottal jet tended to skew toward the nearest wall; with the false folds, the opposite trend was observed. rms velocity calculations showed the jet shear layer and laminar core. The rms velocities were higher in the vocal tract cases compared to the open jet and false fold cases.  相似文献   

7.
Voiced sounds were simulated with a computer model of the vocal fold composed of a single mass vibrating both parallel and perpendicular to the airflow. Similarities with the two-mass model are found in the amplitudes of the glottal area and the glottal volume flow velocity, the variation in the volume flow waveform with the vocal tract shape, and the dependence of the oscillation amplitude upon the average opening area of the glottis, among other similar features. A few dissimilarities are also found in the more symmetric glottal and volume flow waveforms in the rising and falling phases. The major improvement of the present model over the two-mass model is that it yields a smooth transition between oscillations with an inductive load and a capacitive load of the vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both below and above the first formant frequency of the vocal tract. By taking advantage of the wider continuous frequency range, the two-dimensional model can successfully be applied to the sound synthesis of a high-pitched soprano singing, where the fundamental frequency sometimes exceeds the first formant frequency.  相似文献   

8.
非定常尾迹控制叶栅分离研究   总被引:1,自引:0,他引:1  
本文采用大涡模拟对某大转角叶栅的非定常分离流动及其在非定常尾迹作用下的分离控制机理进行了数值分析。主要捕捉了两个特征频率:分离泡不稳定频率fshear和尾缘脱落涡频率fshed,研究了不同的激励频率、尾迹移动方向、随机脉动等激励特征控制流动分离的效果。结果显示:特定外部频率强化了分离剪切层中的K-H展向涡结构,fshed能同时影响分离区域和尾涡区域,fshear只能作用于分离区域;尾迹从吸力面向压力面移动时,分离结构表现出对来流周期性更明显的响应;进口随机脉动对破坏K-H展向涡结构非常有效。  相似文献   

9.
The effect of glottal angle on intraglottal pressure   总被引:1,自引:0,他引:1  
Intraglottal pressure distributions depend upon glottal shape, size, and diameter. This study reports the effects of varying glottal angle on intraglottal and transglottal pressures using a three-dimensional Plexiglas model with a glottis having nine symmetric glottal angles and a constant minimal glottal diameter of 0.06 cm. The empirical data were supported by computational results using FLUENT. The results suggested that (1) the greater the convergent glottal angle, the greater outward driving forces (higher intraglottal pressures) on the vocal folds; (2) flow resistance was greatest for the uniform glottis, and least for the 10 degrees divergent glottis; (3) the greatest negative pressure in the glottis and therefore the greatest pressure recovery for diverging glottal shapes occurred for an angle of 10 degrees; (4) the smaller the convergent angle, the greater the flow resistance; (5) FLUENT was highly accurate in predicting the empirical pressures of this model; (6) flow separation locations (given by FLUENT) for the divergent glottis moved upstream for larger flows and larger glottal angles. The results suggest that phonatory efficiency related to aerodynamics may be enhanced with vocal fold oscillations that include large convergent angles during glottal opening and small (5 degrees - 10 degrees) divergent angles during glottal closing.  相似文献   

10.
Modeling the human larynx can provide insights into the nature of the flow and pressures within the glottis. In this study, the intraglottal pressures and glottal jet flow were studied for a divergent glottis that was symmetric for one case and oblique for another. A Plexiglas model of the larynx (7.5 times life size) with interchangeable vocal folds was used. Each vocal fold had at least 11 pressure taps. The minimal glottal diameter was held constant at 0.04 cm. The glottis had an included divergent angle of 10 degrees. In one case the glottis was symmetric. In the other case, the glottis had an obliquity of 15 degrees. For each geometry, transglottal pressure drops of 3, 5, 10, and 15 cm H2O were used. Pressure distribution results, suggesting significantly different cross-channel pressures at glottal entry for the oblique case, replicate the data in another study by Scherer et al. [J. Acoust. Soc. Am. 109, 1616-1630 (2001b)]. Flow visualization using a LASER sheet and seeded airflow indicated separated flow inside the glottis. Separation points did not appear to change with flow for the symmetric glottis, but for the oblique glottis moved upstream on the divergent glottal wall as flow rate increased. The outgoing glottal jet was skewed off-axis for both the symmetric and oblique cases. The laser sheet showed asymmetric circulating regions in the downstream region. The length of the laminar core of the glottal jet was less than approximately 0.6 cm, and decreased in length as flow increased. The results suggest that the glottal obliquity studied here creates significantly different driving forces on the two sides of the glottis (especially at the entrance to the glottis), and that the skewed glottal jet characteristics need to be taken into consideration for modeling and aeroacoustic purposes.  相似文献   

11.
This study examined pressure and velocity profiles in a hemilarynx mechanical model of phonation. The glottal section had parallel walls and was fabricated from hard plastic. Twelve pressure taps were created in the vocal fold surface and connected to a differential pressure transducer through a pressure switch. The glottal gap was measured with feeler gauges and the uniform glottal duct was verified by use of a laser system. Eight pressure transducers were placed in the flat wall opposite the vocal fold. Hot-wire anemometry was used to obtain velocity profiles upstream and downstream of the glottis. The results indicate that the pressure distribution on the vocal fold surface was consistent with pressure change along a parallel duct, whereas the pressures on the opposite flat wall typically were lower (by 8%-40% of the transglottal pressure just past mid-glottis). The upstream velocity profiles were symmetric regardless of the constriction shape and size. The jet flow downstream of the glottis was turbulent even for laminar upstream conditions. The front of the jet was consistently approximately 1.5 mm from the flat wall for glottal gaps of 0.4, 0.8 and 1.2 mm. The turbulence intensity also remained approximately at the same location of about 4 mm from the flat wall for the two larger gaps.  相似文献   

12.
The acoustical response of a slit with a mean bias flow is numerically studied. By means of a potential flow model based on the discrete vortex method and a spanwise-averaged three-dimensional Green?s function, both unsteady vortical flow and slit impedance are obtained in a unified theoretical framework. The numerical simulation focuses on the acoustic-excited vortex structures of the slit flow while neglecting the viscous damping effect. Three representative flow features are demonstrated, which are the destabilized jet flow, the rolling up of vortex sheets and formation of vortex pairs, and the reversal flow with alternating vortex shedding on both sides of the slit. These features are corresponding to low, moderate, and high sound amplitude, respectively. The acoustic behavior of the slit can be divided into linear, transition, and nonlinear regimes. During its evolution through the three regimes, the resistance exhibits a constant value, a slight decrease, and a significant increase with the increasing sound amplitude. Correspondingly, the reactance first remains constant and then shows a modest decrease as the sound amplitude increases. The nonlinear effect also causes the gradual decrease of the mean bias velocity in company with the marked increase of the amplitude of the fluctuating velocity in the slit. The mean bias velocity decreases to about 80 percent of its linear value at the transition point where reversal flow begins to occur, and further decreases to only 10 percent in the highly nonlinear region. The slit impedance is also presented as a function of frequency and for different aspect ratios. And the effects of frequency and slit geometry are discussed.  相似文献   

13.
The particle velocity across the glottis was measured with simultaneous electroglottography, photoglottography, and subglottic pressure in an in vivo canine model of phonation. A constant temperature anemometer measured flow velocity at five midline anterior to posterior glottal positions. Tracheal input air flow was varied in five steps from 175 to 500 cc/s, while vocal fold approximation was achieved by constant electrical stimulation of the laryngeal nerves. For all levels of air flow, a decreasing peak velocity gradient was observed from the anterior commissure to the arytenoids. Time-varying features of the flow velocity are discussed in relation to glottal vibratory events and aerodynamics.  相似文献   

14.
Recent experimental studies have shown the existence of optimalvalues of the glottal width and convergence angle, at which the phonation threshold pressure is minimum. These results indicate the existence of an optimal glottal configuration for ease of phonation, not predicted by the previous theory. In this paper, the origin of the optimal configuration is investigated using a low dimensional mathematical model of the vocal fold. Two phenomena of glottal aerodynamics are examined: pressure losses due to air viscosity, and air flow separation from a divergent glottis. The optimal glottal configuration seems to be a consequence of the combined effect of both factors. The results agree with the experimental data, showing that the phonation threshold pressure is minimum when the vocal folds are slightly separated in a near rectangular glottis.  相似文献   

15.
Air pressure associated with airflow from the lungs drives the vocal folds into oscillation and allows the air to exit the glottis as a turbulent jet, even though laminar flow may enter the glottis from the trachea. The separation of the turbulence from the deterministic portion of the glottal jet was investigated in the excised canine larynx model. The present study is methodological in that the main goal was to examine three methods of obtaining reasonable representations of both the deterministic signal and the residual turbulence portion: (a) smoothing, (b) wavelet denoising, and (c) ensemble averaging. Ensemble averaging resulted in a deterministic signal that disregarded gross cyclic alterations while exaggerating the turbulence intensity. Wavelet denoising can perform an excellent analysis and synthesis of the glottal velocity, but was problematic in determining which levels of analysis to choose to represent both the deterministic and turbulence appropriately. Smoothing appeared to be the most appropriate for phonation velocities because it preserved gross cyclic variations important to perturbations and modulations, while extracting turbulence at what appears to be reasonable levels.  相似文献   

16.
An equation describing the time-evolution of glottal volume velocity with specified vocal fold motion is derived when the sub- and supra-glottal vocal tracts are present. The derivation of this Fant equation employs a property explicated in Howe and McGowan [(2011) J. Fluid Mech. 672, 428-450] that the Fant equation is the adjoint to the equation characterizing the matching conditions of sub- and supra-glottal Green's functions segments with the glottal segment. The present aeroacoustic development shows that measurable quantities such as input impedances at the glottis, provide the coefficients for the Fant equation when source-tract interaction is included in the development. Explicit expressions for the Green's function are not required. With the poles and zeros of the input impedance functions specified, the Fant equation can be solved. After the general derivation of the Fant equation, the specific cases where plane wave acoustic propagation is described either by a Sturm-Liouville problem or concatenated cylindrical tubes is considered. Simulations show the expected skewing of the glottal volume velocity pulses depending on whether the fundamental frequency is below or above a sub- or supra-glottal formant. More complex glottal wave forms result when both the first supra-glottal fundamental frequencies are high and close to the first sub-glottal formant.  相似文献   

17.
Flow through a rigid model of the human vocal tract featuring a divergent glottis was numerically modeled using the Reynolds-averaged Navier-Stokes approach. A number of different turbulence models, available in a widely used commercial computational fluid dynamics code, were tested to determine their ability to capture various flow features recently observed in laboratory experiments and large eddy simulation studies. The study reveals that results from unsteady simulations employing the k-omega shear stress transport model were in much better agreement with previous measurements and predictions with regard to the ability to predict glottal jet skewing due to the Coanda effect and the intraglottal pressure distribution or related skin friction coefficient, than either steady or unsteady simulations using the Spalart-Allmaras model or any other two-equation turbulence model investigated in this study.  相似文献   

18.
Modeling laryngeal aerodynamics requires specification of the glottal geometry. Changing the glottal exit radius alters the intraglottal pressure distributions in the converging glottis [Scherer et al., J. Acoust. Soc. Am. 110, 2267-2269 (2001)]. This study examined the effects of the glottal entrance radius on the intraglottal pressure distributions for divergent angles of 5°, 10°, 20°, 30°, and 40°. Glottal airflow and minimal glottal diameter were held constant at 73.2 cm(3)/s and 0.02 cm, respectively. The computational code FLUENT was used to obtain the pressure distributions. Results suggest that a smaller glottal entrance radius tends to (1) lower the transglottal pressure (reduce glottal flow resistance), although this is angle dependent, (2) make the pressure dip near the glottal entrance more negative in value, (3) increase the slope of the pressure distribution just upstream of the glottal entrance, and (4) make the initial pressure recovery (rise) in the glottis steeper. A general empirical equation for transglottal pressure as a function of radius, angle, and separation point location is offered. These results suggest that glottal entrance curvature for the divergent glottis significantly affects the driving pressures on the vocal folds, and needs to be well specified when building computational and physical models.  相似文献   

19.
Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier-Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called "Coanda effect" in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection.  相似文献   

20.
旋涡动力学方程非定常动边界条件   总被引:5,自引:2,他引:3  
详细讨论了旋涡动力学方程非定常动边界条件。给出了任意非定常运动边界上速度旋度的确定方法。并采用了“局部线性化及再校正”技术、时间滞后求解方法,求解每一时间步边界上速度旋度值。这样可以很大程度上节省计算时间。并讨论了数值实验结果,指出动边界问题的非线性特征,对这样复杂的非线性问题不宜作过份简化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号