首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imaging laser Doppler velocimetry (ILDV) is a novel flow measurement technique, which enables the measurement of the velocity in an imaging plane. It is an evolution of heterodyne Doppler global velocimetry (HDGV) and may be regarded as the planar extension of the classical dual-beam laser Doppler velocimetry (LDV) by crossing light sheets in the flow instead of focused laser beams. Seeding particles within the flow are illuminated from two different directions, and the light scattered from the moving particles exhibits a frequency shift due to the Doppler effect. The frequency shift depends on the direction of the illumination and the velocity of the particle. The superposition of the two different frequency-shifted signals on the detector creates interference and leads to an amplitude modulated signal wherein the modulation frequency depends on the velocity of the particle. This signal is detected using either a high-speed camera or alternatively a smart pixel imaging array. This detector array performs a quadrature detection on each pixel with a maximum demodulation frequency of 250 kHz. To demonstrate the feasibility of the technique, two experiments are presented: The first experiment compares the measured velocity distribution of a free jet using ILDV performed with the smart pixel detector array and a high-speed camera with a reference measurement using PIV. The second experiment shows an advanced setup using two smart pixel detector arrays to measure the velocity distribution on a rotating disk, demonstrating the potential of the technique for high-velocity flow measurements.  相似文献   

2.
多普勒全场测速技术的进展   总被引:1,自引:0,他引:1  
张洪军  吕进 《力学进展》2007,37(3):428-442
多普勒全场测速(Doppler global velocimetry)是一种基于分子滤波原理来测量散射光多普勒频移, 从而测量平面内流动速度场的技术, 主要应用于流体力学、空气动力学和燃烧学实验研究中, 尤其适用于较高马赫数流场测量. 研究人员也称其为平面多普勒测速(planar Doppler velocimetry)、吸收-滤波平面多普勒测速(Absorption filtered planarDoppler velocimetry), 滤波瑞利散射技术(filtered Rayleigh scattering)等. 本文对多普勒全场测速技术的工作原理、结构组成、数据处理、发展趋势等进行了比较全面的介绍.   相似文献   

3.
Measuring velocity spectra in turbulent flows requires methods providing a high temporal resolution and a low measurement uncertainty. Hot-wire anemometry is often used, but it is intrusive. Laser Doppler anemometry is non-intrusive, but due to the statistical arrival of individual tracers provides no constant measurement rate. We therefore propose the use of Doppler global velocimetry (DGV), which is a contactless method allowing temporally equidistant measurements of continuous signals. Additionally, 2d measurements are possible instead of single point measurements. The commonly applied slow cameras are substituted by a fibre coupled detector array consisting of 25 avalanche photo diodes, which increases temporal resolution up to 10 μs. Contrarily to conventional DGV, a sinusoidal laser frequency modulation enables omitting the reference detector array. A correction of beam splitting and image misalignment errors is thus not necessary, but disturbances due to temporal fluctuations of the scattered light can occur and have to be reduced by increasing the modulation frequency. We validate the proposed system capability of synchronously measuring velocity spectra at multiple points in turbulent flows by presenting experimental results. The acquired velocity spectra in a wind tunnel experiment show good agreement with hot-wire comparison measurements within 0.1 m/s. An uncertainty analysis is given, which allows the achievable measurement uncertainty to be estimated as a function of the desired temporal resolution. An uncertainty down to 0.2 m/s can, for example, be achieved assuming a desired temporal resolution of 1 ms. These promising results open new perspectives for turbulence and correlation studies in flows such as to investigate the turbulence characteristics behind a truncated cylinder attached to a plate or the inlet of an aircraft turbine for flow characterisation in industry.  相似文献   

4.
The main advantage of the described Doppler global velocimeter (DGV) systems based on frequency modulation (FM) or frequency shift keying (FSK) is that no reference detector is required. The frequency variation of the laser light during one modulation period additionally allows an on-line calibration of the complete DGV system. Thus, the new method has the potential to reduce the uncertainty of conventional DGV velocity measurements since time resolved velocity field measurements on a spinning disc have shown standard deviations down to 0.02 m/s. On investigating flow fields, velocity components notably less than 0.5 m/s were resolved.  相似文献   

5.
Doppler picture velocimetry (DPV) is a tool for visualizing and measuring the flow velocity distribution of tracer particles in a laser light sheet. A frequency sensitive Michelson interferometer, tuned for detecting the velocity distribution by the Doppler effect, visualizes the velocity information of tracer particles crossing an illuminating laser light sheet as interference fringe patterns. Many efforts have been done to evaluate best these DPV patterns, in order to obtain the frequency distribution and, by applying the Doppler formula, the velocity profile of the tracers. The first processing method, developed in 1982, relied on manual processing of the pictures by the user, due to the unavailability of suitable high performance picture processing algorithms. This drawback made DPV being considered as a rather time-consuming measurement technique with limited accuracy, compared to existing commercial velocity measurement systems (e.g. PIV). This is no more the state of the art: The new DPV analysis software, presented in this paper, allows automated processing of the interference fringe samples obtained by two images, a reference picture without frequency shift and a Doppler picture containing the frequency shift, using single beam velocimetry. Based on Fast Fourier transformation (FFT), the presented algorithm determines the corresponding velocity profile (in pseudo colours) within only a few seconds on a standard personal computer without user intervention.  相似文献   

6.
The acceleration of aluminum particles with a 5μm diameter in the flow field behind an incident shock wave was investigated experimentally in a 10-m long and 70 mm inner diameter shock tube. By means of instantaneous Laser Doppler Velocimetry (LDV) the velocity of the particles was observed directly. The light scattered by the moving particles is Doppler shifted and sent to the laser Doppler velocimeter. The velocimeter essentially consists of a phase-stabilized Michelson interferometer used as a sensitive spectrometer. An electro-optical circuit ensures the phase stabilization that results in a voltage signal independent of the scattered light intensity and proportional to the mean velocity of the particles at the measurement point. Because of the very short response time (1μs) of the LDV system used here, the latter gives a continuous real-time signal of the particle acceleration. To avoid particle oxidation the particles were accelerated by a high-speed nitrogen gas flow. From the measured velocity the dimensionless drag coefficient was calculated. The drag coefficient is related to the fluid dynamic force exerted by the gas on the particles. The experimental data were compared to theoretical models from the literature. A significant deviation between the model and the experimental data was observed. This deviation is supposed to be induced by the shock wave, which hits the particles and breaks them into pieces of a smaller diameter. Further experiments will be carried out in the future to check the size distribution of the particles after the shock has gone past them.   相似文献   

7.
Development of digital particle imaging velocimetry for use in turbomachinery   总被引:12,自引:0,他引:12  
Digital Particle Imaging Velocimetry (DPIV) is a powerful measurement technique, which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. The instantaneous planar velocity measurements obtained with PIV make it an attractive technique for use in the study of the complex flow fields encountered in turbomachinery. The ability to acquire multiple measurement points of comparable accuracy to LDV results in reduced runtime and enables the study of both transient and steady state flow phenomena. Many of the same issues encountered in the application of LDV to rotating machinery apply in the application of PIV. Techniques for optical access, light sheet delivery, CCD camera technology and particulate seeding are discussed. Results from the successful application of the PIV technique to both the blade passage region of a transonic axial compressor and the diffuser region of a high speed centrifugal compressor are presented. Both instantaneous and time-averaged flow fields were obtained. The 95% confidence intervals for the velocity estimates were also determined. Received: 16 November 1998/Accepted: 10 April 1999  相似文献   

8.
This paper shows the feasibility of using digital speckle pattern interferometry (DSPI) as a fluid velocimetry technique in high speed gaseous flows. The light scattered from an illuminated plane was recorded with a CCD camera at the same time as a uniform reference beam. A fibre optic was used to bring this reference beam from the laser cavity to the CCD camera. The comparison of two subsequent frames gives information about the velocity field. DSPI was applied to a Von Karman street flow set up in a wind tunnel. Particle image velocimetry (PIV) measurements were also obtained for comparison with the information provided by DSPI. A system for increasing the measurement region when using short coherence length lasers is proposed. Received: 15 June 2000/Accepted: 8 September 2000  相似文献   

9.
Measurements of bubble and liquid velocities in two-phase flow have been made using a new forward/backward scattering Laser Doppler Velocimetry (LDV) technique. A standard LDV fiber optic probe was used to measure the bubble velocity using direct backscattered light. A novel retro-reflector and lens assembly permitted the same probe to measure the liquid velocity with direct forward-scattered light. Preliminary results show the usefulness of the technique in a duct of narrow thickness dimension.  相似文献   

10.
11.
风沙两相流测量技术研究进展   总被引:4,自引:0,他引:4  
杨斌  王元  王大伟 《力学进展》2006,36(4):580-590
围绕风沙两相流的测量, 归纳了过去几十年来在风沙动力学研究中所使用的风速测量技术和输沙率测量装置.着重讨论了高频测量在目前风沙动力学研究中的必要性, 分析了传统风速和输沙率测量装置的优缺点.对新一代光学测量技术------PIV在风沙两相流测量中的应用进行了较为详细的探讨.指出PIV测速技术在风沙两相流研究中具有广泛的应用前景, 使用PIV测速技术可以得到风沙流结构、两相速度场等宏观信息, 同时也可以进行单个颗粒运动状态的研究.   相似文献   

12.
This paper describes a planar Doppler velocimetry (PDV) technique that is capable of measuring the three, instantaneous and time average components of velocity over two spatial dimensions using a single pair of signal and reference cameras. The three views required to obtain three-component velocity information are guided from the collection optics to a single imaging plane using flexible fibre imaging bundles. These are made up of a coherent array of single fibres and are combined at one end as the input plane to the measurement head. Measurements of the velocity field of a rotating disk are used in the development of the technique and initial results of the instantaneous velocity field of a jet are presented.  相似文献   

13.
This work proposes a new deconvolution technique to obtain local drop size distributions from line-of-sight intensity data measured by laser diffraction technique. The tomographic reconstruction, based on the maximum entropy (ME) technique, is applied to forward scattered light signal from a laser beam scanning horizontally through the spray on each plane from the center to the edge of spray, resulting in the reconstructed scattered light intensities at particular points in the spray. These reconstructed intensities are in turn converted to local drop size distributions. Unlike the classical method of the onion peeling technique or other mathematical transformation techniques that yield unrealistic negative scattered light intensity solutions, the maximum entropy constraints ensure positive light intensity. Experimental validations to the reconstructed results are achieved by using phase Doppler particle analyzer (PDPA). The results from the PDPA measurements agree very well with the proposed ME tomographic reconstruction.  相似文献   

14.
An accurate non-intrusive method of measurement of liquid and sediment velocities, called Discriminator Laser Doppler Velocimetry (DLDV) is described. The DLDV arrangement consists of a LDV, and a discriminator system that utilizes near on-axis diffraction from sediment particles passing through or grazing the LDV measurement volume to result in strong voltage signals. For liquid velocity statistics, velocity measurements associated with a discriminator voltage above a threshold are discarded; the discriminator signal is used to validate that only particle velocities are recorded during particle velocity measurement. Possible error sources in the use of DLDV are discussed. Measurements using DLDV in an open-channel alluvial sand-laden flow indicate differences between liquid and particle velocities even for dilute sand concentrations.The initial financial support of the project was provided by NSF, under grant CTS-9021149. Financial support from the Iowa Institute of Hydraulic Research in gratefully acknowledged.  相似文献   

15.
the measurements of flow over non-uniform gravel open channel have been conducted with Laser Doppler Velocimetry (LDV). The experimental results indicate that the distribution of mean velocity agrees well with the Nikuradse's law. From the distributions of resistance coefficient, reference level and turbulence intensity, the classification of small scale roughness case is obtained.Project supported by the National Science Foundation of China  相似文献   

16.
A specially designed Doppler global velocimetry system (DGV, planar Doppler velocimetry) was developed and installed in a high-speed cryogenic wind tunnel facility for use at free stream Mach numbers between 0.2 and 0.88, and pressures between 1.2 bar and 3.3 bar. Particle seeding was achieved by injecting a mixture of gaseous nitrogen and water vapor into the dry and cold tunnel flow, which then immediately formed a large amount of small ice crystals. Given the limited physical and optical access for this facility, DGV is considered the best choice for non-intrusive flow field measurements. A multiple branch fiber imaging bundle attached to a common DGV image receiving system simultaneously viewed a common area in the flow field from three different directions through the wind tunnel side walls. The complete imaging system and fiber-fed light sheet generators were installed inside the normally inaccessible pressure plenum surrounding the wind tunnels test section. The system control and frequency-stabilized laser system were placed outside of the pressure shell. With a field of view of 300×300 mm2, the DGV system acquired flow maps at a spatial resolution of 3×3 mm2 in the wake of simple vortex generators as well as in the wake of different wing-tip devices on a half-span aircraft model. Although problems mainly relating to light reflections and icing on the observation windows significantly impaired part of the measurements, the remotely controlled hardware operated reliably over the course of three months.  相似文献   

17.
The recent development in measuring 2D Doppler shift distributions for flow velocimetry using the dispersive properties of atomic line filters is presented. On the basis of velocity field measurements on a subsonic jet flow and a tip vortex flow in a medium-sized wind tunnel, the technique was assessed. Atomic line filters near a resonant transition combine imaging capabilities with a sharp frequency cutoff and an associated region of strong anomalous dispersion. While conventional Doppler global velocimetry relies on the absorption of the filter to convert frequency shifts to intensity variations, near-resonant interferometry uses its dispersion to detect frequency shifts as phase changes in an interference pattern. In the present setup, an iodine vapor cell in an imaging Michelson interferometer is used. With the illuminating laser frequency tuned near a resonant transition, the cell’s dispersion converts the frequency content of the field of view into a distortion of the carrier-fringe pattern recorded at the image plane of the interferometer. The phase distribution in the fringe images is reconstructed by filtering the individual images with a 2D Gabor filter pair tuned to the spatial frequencies of the basic carrier-fringe pattern. The post-processing is concluded with subsequent phase-unwrapping and subtraction of the carrier reference fringe phase. The method and the setup were demonstrated and calibrated experimentally on a rotating disc. The capability of the technique to operate in a real experimental environment was validated in a free subsonic jet and a tip vortex flow behind a wing section in a medium-sized wind tunnel facility. The measurements were found to be in generally good agreement with the theoretically predicted system characteristics and the reference measurements. As with other Doppler global techniques, the stability of the pulsed laser system and the secondary scattering in the test volume were identified as the main error sources.  相似文献   

18.
An experiment has been performed in a laminar stagnation point flow in which two non-premixed reactants produced an aerosol of sub-micron particles. The reactants were NH3 and HCl. The rate of mixing of the reactants was determined by the velocity gradient or strain rate of the flow; the response of the aerosol dynamics to the flow field was measured with a laser light scattering technique. Laser Doppler Spectroscopy was used to measure the particle size. It was found that the particle size was independent of the strain rate of the flow. On the other hand, the particle number density decreased as the strain rate increased. It is argued that the intensity of light scattered from the aerosol is, therefore, a measure of the amount of product of the relatively slow NH3-HCl reaction.  相似文献   

19.
Acoustic Doppler Velocimetry (ADV) can measure flow velocities in three directions in experimental facilities and field applications. Based on the Doppler shift effect, ADV can accurately resolve the quasi-instantaneous flow field at frequencies of up to approximately 200 Hz. However, this technique is sensitive to operating conditions that can lead to contaminated signals containing large amplitude spikes, a disadvantage of ADV. Aliasing of the Doppler signal creates these spikes. Such a situation occurs when large particles intersect the sampling volume or acoustic waves. For example during the characterization of river velocities, sediments floating near the riverbed cause aliasing from particles, and more importantly, surface entrained air bubbles contaminate the ADV signal. Spikes due to air bubbles not only increase the standard deviation of the velocity, but also corrupt the autocorrelation and power spectra. As some of these spikes appear like velocity fluctuations, developing accurate despiking procedures is an important requirement during post-processing of ADV velocity measurements in bubbly flow applications. A new hybrid method is introduced which has advantages over conventional despiking methods such as the acceleration thresholding method and the phase-space thresholding method when using ADV in bubbly flow. ADV river velocity measurements near kinetic turbines demonstrate the proposed method. This method is applicable to other bubbly flow applications to characterize the liquid phase using ADV.  相似文献   

20.
A spatially self-referencing velocimetry system based on low-coherence interferometry has been developed. The measurement technique is contactless and relies on the interference between back-reflected light from an arbitrary reference surface and seeding particles in the flow. The measurement location and the flow velocity are measured relative to the reference surface’s location and velocity, respectively. Scanning of the measurement location along the beam direction does not require mechanical movement of the sensor head. The reference surface (which can move or vibrate relative to the sensor head) can be either an external object or the surface of a body over which measurements are to be performed. The absolute spatial accuracy and the spatial resolution only depend on the coherence length of the light source (tens of microns for a superluminescent diode). The prototype is an all-fiber assembly. An optical fiber of arbitrary length connects the self-contained optical and electronics setup to the sensor head. Proof-of-principle measurements in water (Taylor–Couette flow) and in air (Blasius boundary layer) are reported in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号