首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, nanostructures have been given significant attention in medical and biological fields. Among these nanostructures, graphene oxide (GO) has been widely used in drug delivery systems, because of its unique properties, and the ability to connect to other nanostructures such as magnetic nanoparticles (NPs) as well as polymers by its functional groups. In this research, first, GO was prepared by exfoliating graphite according to the modified Hummer’s method, and then the Fe3O4 NPs were synthesized by a simple co-precipitation method on GO nanosheets. In the next step, with the help of the ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide coupling reagents, the polyethylene glycol (PEG) polymer was bonded to the GO-Fe3O4 nanocomposite. Finally, anti-cancer drug, curcumin (Cur) was loaded onto the nanocomposite and the Cur loading ratio was measured at about 8%. The samples were evaluated using Fourier transform-infrared, differential scanning calorimtery, vibrating-sample magnetometry, atomic force microscopy and dynamic light scattering techniques. The results show that the prepared nanocomposite is an appropriate candidate for biomedical applications.  相似文献   

2.
Ultrasound mediates the release of curcumin from microemulsions   总被引:1,自引:0,他引:1  
Ultrasound is a powerful noninvasive modality for biomedical imaging, and holds much promise for noninvasive drug delivery enhancement and targeting. However, the optimal design of sound sensitive carriers is still poorly understood. In this study, curcumin, an important natural antioxidant and anticancer compound, was stably entrapped into microemulsion droplets with average size 20-35 nm. To release curcumin, low frequency (40 kHz) ultrasound at an intensity of 3.8 or 9.8 W/cm2 was applied to the microemulsions, using a probe sonicator. On insonation, much of the curcumin was released from the microemulsions and formed insoluble aggregates, as evidenced by decreased UV-vis absorption at 420 nm. The initial release rate (assayed by the rate of change of absorption) was as high as 0.11 microg/s (1.87%/sec) in phosphate buffered saline solution at neutral pH, but decreased at acidic pH. Interestingly, lower curcumin loading led to a more rapid release under insonation. Measurements of emulsion droplet size implicate droplet reorganization (fusion or fission) as an important contributing mechanism for the ultrasonic release of this compound. Although cargo in microemulsions is partitioned, rather than encapsulated (as in, for example, liposomes), these new results demonstrate that microemulsion carriers are feasible for some ultrasonic drug delivery applications.  相似文献   

3.
Simple, sensitive and rapid adsorptive voltammetric behaviour of drotaverine hydrochloride onto the HMDE has been explored and validated in surfactant media by using cyclic, differential pulse and square-wave voltammetry. Addition of Tween-20 to the drotaverine hydrochloride containing electrolyte enhances the reduction current signal. The voltammograms of the drug with Tween-20 in phosphate buffers of pH 2.5-11.0 exhibit a single well defined reduction peak which may be due to the reduction of -CC- group. The cyclic voltammetric studies indicated the reduction of drotaverine hydrochloride at the electrode surface through two electron irreversible step and diffusion-controlled. The peak current showed a linear dependence with the drug concentration over the range 0.8-7.2μgmL(-1). The calculated LOD and LOQ are 1.8 and 6.0ngmL(-1) by SWCAdSV and 8.1 and 27.2ngmL(-1) by DPCAdSV, respectively. The procedure was applied to the assay of the drug in tablet form with mean percentage recoveries of 100.2% with SWCAdSV and 99.7% with DPCAdSV. The validity of the proposed methods was further assessed by applying a standard addition technique.  相似文献   

4.
The novel fish oil O/W microemulsion system is formed with food-acceptable components, Tween 80, ethyl oleate, fish oil and water. We studied the influence of fish oil proportion in the oil phase on the microemulsion regions. We investigated this system using the dynamic light scattering and transmission electron microscopy; the rheological characteristics and release effect were also explored. The obtained results indicated that the particle sizes of spherical droplets in microemulsions depend significantly on the total oil phase content, varying from 5 to 198 nm. The rheological measurements showed that all studied microemulsions followed shear thinning behavior. Well-controlled release profile of the fish oil microemulsions was found in different dialyzate solutions.  相似文献   

5.
We have prepared microemulsions consisting of water/[40 wt % polyoxyethylene (20 mol) glycerin isostearate (abbreviated as POE-GIS) + 60 wt % random copolymer of polyoxyethylene (POE, 38 mol)/polyoxypropylene (POP, 10 mol) pentaerythritol tetramethyl ether {abbreviated as PEPTME (38/10)}]/[polyoxyethylene (POE, 19 mol)/polyoxypropylene (POP, 19 mol) polydimethylsiloxane copolymer (abbreviated as POE/POP-PDMS)] and water/[40 wt % POE-GIS + 60 wt % PEPTME (38/10)]/[95 wt % POE/POP-PDMS + 5 wt % oleic acid (abbreviated as OA)] systems and characterized them with optical observation, rheometry, and freeze-fracture transmission electron microscopy (FF-TEM) images. Bicontinuous and droplet-type O/W (oil-in-water) microemulsions are formed depending on the volume fraction of water. The bicontinuous structure observed in the oil-rich region, upon successive dilution with water, is transformed into a droplet-type microemulsion without phase separation.The prepared droplet-type microemulsion containing polymeric silicone and random copolymer PEPTME (38/10) as a cosurfactant in the water-rich region has potential applications in cosmetics.  相似文献   

6.
In this work the structural features of microemulsions (MEs) containing the pharmaceutical biocompatible Soya phosphatidylcholine/Tween 20 (1:1) as surfactant (S), Captextrade mark 200 as oil phase (O), and phosphate buffer 10mM, pH 7.2 as aqueous phase (W) were studied. Systems obtained with different proportions of the components were described by pseudo-ternary phase diagrams in order to characterize the microemulsions studied here. MEs were prepared with and without the polyene antifungal drug amphotericin B (AmB). The maximum AmB incorporation into the ME system was dependent on both the oil phase and surfactant proportions with 6.80 and 5.7mg/mL in high contents, respectively. The incorporation of AmB into the ME systems significantly increased the profile of the droplet size of the ME for all ranges of surfactant proportions used in the formulations. The microstructures of the system were characterized by dynamic light scattering (DLS) and rheological behavior. The DLS results showed that the size of the oil droplets increases 4.6-fold when AmB is incorporated into the ME system. In all cases the increase in the proportion of the oil phase of the ME leads to a slight increase in the diameter of the oil droplets of the system. Furthermore, for both the AmB-loaded and AmB-unloaded MEs, the size of the oil droplets decrease significantly with the increase of the S proportion in the formulations, demonstrating the efficiency of the surfactant in stabilizing the ME. Depending on the ME composition, an anti-thixotropic behavior was found. The maximum increases of the consistency index caused by the increase of the oil phase of the ME were of 17- and 25-times for the drug-loaded and drug-unloaded MEs, respectively. However, the observed effect for the drug-loaded ME was about 4.6 times higher than that for the drug-unloaded one, demonstrating the strong effect of the drug on the rheological characteristics of the ME system. Therefore, it is possible to conclude that the investigated ME can be used as a very promising vehicle for AmB.  相似文献   

7.
In the last few decades ionic liquids (ILs) have been widely considered as a “green solvents” and they are used in various fields. ILs can be used in the formation of microemulsion as a dispersed medium, polar domain and recently as a surfactant. In this particular review our discussion is about the novel IL-based aqueous and non-aqueous microemulsions which are quite fascinating and interesting research field for scientists. Synthesis of double and triple chain containing surface active ionic liquid (SAILs) and formation of microemulsion as a surfactant with ILs as a polar core have been elaborated in this review. ILs with a certain surface activity having long alkyl chain substituents can self-aggregate and form ILs microemulsion with high-temperature stability and temperature insensitivity. Characterization of these ILs in oil microemulsion and different ultrafast processes which are performed inside these characterized systems are documented very well. We have highlighted the similarities and differences between the nonaqueous microemulsions and the aqueous microemulsions. Addition of water and effect of temperature are quite important in case of the ILs containing microemulsions.  相似文献   

8.
Hydroquinone (HQ) loaded polymer solution was electrospun for its topical application. Nanofibers were then investigated in terms of stability, drug release, and antifungal activity. The effect of chitosan (CS) was investigated on the viscosity, stability, drug release, and antifungal activity of the developed formulation. Results indicate a significantly stable HQ-loaded nanofiber formulation. The addition of CS caused hydration of the drug delivery system and enhanced drug release but reduced its stability. HQ-loaded nanofiber mat showed significant antifungal activity, however, there was no inhibition zone in samples containing CS.  相似文献   

9.
10.
Microemulsions formed with water—xylene—sodium alkyl benzene sulfonate (NaDBS)-hexanol have been investigated using time-average light scattering conductivity and viscosity measurements at 25°C. Four different concentrations of NaDBS were used, namely, 5, 10.9, 15, and 20 wt% and the molar ratio of n-hexanol:NaDBS was kept constant at 3.4, 3.24, 3.4, and 3.4, respectively. The light scattering results showed that at low volume fractions of water, φH2O, the Rayleigh ratio, R90 increased slowly with an increase in φH2O but above a critical volume fraction of water, φH2OS, R90 increased almost linearly with increase of φH2O, reached a maximum at another critical water volume fraction, φH2OC, above which R90 decreased with further increase in φH2O. The results were interpreted qualitatively in terms of the possible aggregate units formed. A quantitative analysis of the light scattering data was carried out using a procedure based on the use of a hard sphere model for particle interactions. Using this approach, the water droplet radius R was calculated as a function of φH2O for the four systems investigated. The results showed a linear increase of R with increase in φH2O. Approximate values of the water radii were also calculated from the interfacial area and these were found to be in full agreement with the radii obtained from light scattering measurements. The conductance κ showed a non-monotonic variation as the water concentration was increased. A maximum in the κ-φH2O was observed at a critical volume fraction of water φH2OS above which κ decreased and then remained almost constant over a range of φH2O values. The conductance then sharply increased at another φH2O value, namely φH2OC. This φH2OC value was reduced with increase in NaDBS concentration. The conductance results indicate structural changes in the system as the water concentration increases and the transition observed correlate with those obtained from light scattering. Moreover, the low κ values found and the non-monotonic variation of κ with φH2O are indicative of the presence of definitive water cores with an external surfactant film which acts as a barrier for ion transport. Viscosity results showed the behavior normally encountered with concentrated dispersions, the relative viscosity ηr increasing exponentially with φH2O. The viscosity data were fitted to the Mooney equation. The results showed an increase in the Einstein coefficient with increase in NaDBS concentration indicating an increase in the hydrodynamic volume of droplets. This was attributed to the increase of the ratio of the surfactant layer thickness to the droplet core radius as the NaDBS concentration is increased.  相似文献   

11.
Magnetically polymeric nanocarriers, Cur‐FA‐SAMN, were designed and synthesized for targeting, therapeutic treatments to cancer cells. Amine‐group immobilized iron oxides, Fe3O4‐NH2, were attached on the surface of self‐assembled tri‐block copolymer, poly[(acrylic acid)‐block‐(N‐isopropylacrylamide)‐block‐(acrylic acid)] synthesized via reversible addition‐fragmentation chain‐transfer polymerization. For the purpose of targeting effect, folic acid was grafted on the surface of Fe3O4‐NH2 attached nanoparticles. The nanocarriers were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and UV‐Vis spectral analysis. Therefore, a hydrophobic anti‐cancer drug, curcumin, gained water dispersity, and stable storage via encapsulating into and on the magnetically polymeric nanocarriers, and the release behaviors were studied in vitro, with and without high frequency magnetic field. Biocompatibility and cytotoxicity of inherent and curcumin‐loaded nanocarriers were investigated by MTT assay. Results displayed that our nanocarriers have no cytotoxicity while curcumin‐loaded nanocarriers offered significant death to MCF‐7, human breast camcer cells. Intracellular‐uptake experiments demonstrated tremendous uptake and the destroying effect to MCF‐7 cells, most of the cancer cells were killed and the surviving ones were surrounded by the curcumin‐loaded nanocarriers. According to the aforementioned characteristics, these magnetically polymeric nanocarriers will be able to apply as a potential device for practical therapy. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2706–2713  相似文献   

12.
Novel chitosan based polyelectrolyte complexes (PEC) were developed and optimized in order to obtain films possessing the optimal functional properties (flexibility, resistance, water vapour transmission rate and bioadhesion) to be applied on skin. The development was based on the combination of chitosan and two polyacrylic acid (PAA) polymers with different crosslinkers and crosslinking densities. The interaction between the polymers was maximized controlling the pH, and by forming the films at a pH value close to the pKa of the respective components as identified by potentiometric and turbidimetric titrations. The action of glycerol, PEG200, Hydrovance and trehalose upon the functional properties of the films was also evaluated. Glycerol was found to improve the film properties in terms of flexibility, resistance and water vapour transmission rate (WVTR) with a maximum effect at 30%. The application of a pressure sensitive adhesive (PSA) significantly improved bioadhesion with a negligible influence in the resistance and flexibility of the films.The optimized film, including adhesive, has shown very good properties for application in the skin and represents a very promising formulation for further incorporation of drugs for topical and transdermal administration.  相似文献   

13.
Curcumin is the source of the spice turmeric having potential application in tumor treatment but has limited therapeutic utility because of its poor aqueous solubility. Curcumin suppresses the onset of tumors as well as their growth and metastasis. Cyclodextrin-based nanosponges (NS) have been used to increase the solubility of curcumin and to control its release. The aim of the study was to formulate the complex of curcumin with β-cyclodextrin nanosponge obtained with dimethyl carbonate as a cross linker. The particle size of loaded nanosponge was found to be 487.3 nm with minimum polydispersibility index (0.476). The loaded NS have shown more solubilization efficiency (20.89 μg/ml) in comparison with plain curcumin (0.4 μg/ml) and β-CD complex (5.88 μg/ml). The zeta potential was sufficiently high (?27 mV) which indicates formation of a stable colloidal nanosuspension. The curcumin nanosponge complex (CrNS) was characterized for FTIR, XRD and DSC studies and it confirmed the interactions of curcumin with NS. The in vitro drug release of curcumin was controlled over a prolonged period of time. The in vitro hemolysis study showed that the complex was non-hemolytic. CrNS sample showed only a slight reduction in cytotoxicity against MCF-7 cells, which concludes that there is no change in molecular structure of curcumin in CrNS formulation.  相似文献   

14.
This work was intended to characterize aspirin solubilized in microemulsion systems comprising clove oil, 1-butanol and water. Microemulsions demonstrated the unique ability to solubilize aspirin in polar media, thus having good potential in drug delivery. After incorporation of aspirin, four samples were selected in microstructure and be investigated by conductivity measurements, transmission electron microscope (TEM), and spectroscopic studies (1H-NMR, UV-visible spectroscopy, and IR spectra). The percolation behavior with variation of weight fraction of aqueous phase (?) was confirmed by conductivity measurements. In order to study the effect of aspirin, the conductivity results of aspirin-loaded samples were compared with non-loaded ones. The proton transfer and The competitive H-bonding interactions between aspirin with butanol and water were also discussed in details using 1H-NMR, UV-visible spectroscopy, and IR spectra. These measurements confirmed that the hydrogen-bonded ion pair structure dominated in the solutions.  相似文献   

15.
Organic nanoparticles of cholesterol and retinol have been synthesized in various AOT (Aerosol OT; sodium bis(2-ethylhexyl) sulfosuccinate)/heptane/water microemulsions by direct precipitation of the active principle in the aqueous cores. The nanoparticles are observed by transmission electron microscopy (TEM) using the adsorption of a contrasting agent, such as iodine vapor. The size of the nanoparticles can be influenced, in principle, by the concentration of the organic molecules and the diameter of the water cores, which is related to the ratio R=[H2O]/[surfactant]. The particles remain stable for several months. The average diameter of the cholesterol nanoparticles varies between 3.0 and 7.0 nm, while that of retinol varies between 4.0 and 10 nm. The average size of the cholesterol nanoparticles does not change much either as a function of the ratio R or as a function of the concentration of cholesterol. The constant size of the nanoparticles can be explained by the thermodynamic stabilization of a preferential size of the particles. Chloroform is used to carry the active principle into the aqueous cores. Retinol molecules form J-complexes composed of two or three molecules, as detected by UV-visible spectroscopy.  相似文献   

16.
In vitro transdermal permeation of 5-fluorouracil (antineoplastic), a hydrophilic drug encapsulated in AOT/water/isopropylmyristate water-in-oil microemulsions (MEs), were studied using a modified Keshary and Chien diffusion cell. AOT (aerosol-OT or sodium bis(2-ethylhexyl) sulfosuccinate) is an anionic surfactant, which forms 'water-in-oil' ME in non-aqueous medium. The effect of water and AOT concentrations in MEs to the transdermal permeation of 5-fluorouracil through hairless mouse skin was investigated. MEs with 5:95 weight ratio of AOT:isopropylmyristate, containing 0.9, 1.8, 2.7 and 3.6% w/w of water have showed 1.68-, 2.36-, 3.58- and 3.77-fold increases in the skin flux of 5-fluorouracil (5-FU) respectively, compared to the aqueous solution of drug. The MEs with 5:95, 9:91 and 13:87 weight ratio of AOT:isopropyl myristate at fixed water content W0=15 (W0=[H2O]/AOT]) gave 3.58-, 5.04- and 6.3-fold enhancement of drug. In addition, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to examine the effect of ME on lipid alkyl chain, hydration level, and corneocyte cells of the stratum corneum (SC). Results reveal that the ME interacts with a component of the SC and perturbs its architectural structure. The extent of perturbation in the SC depends on the concentration of water and AOT in the ME. Preliminary dermal toxicity studies indicate that the AOT/water/isopropylmyristate ME be safe for the transdermal permeation of 5-FU.  相似文献   

17.
18.
Methods for preparing colloidal delivery systems for drugs of different chemical structures have been developed and optimized. Proteins were encapsulated in bioadhesive biodegradable starch microparticles and liposomes from negatively charged and zwitter-ionic soybean phospholipids. Proteins and a poorly watersoluble anticancer drug-tamoxifen-were encapsulated in nanoparticles based on the amphiphilic graft block copolymer dextran-poly(?-caprolactone). In vitro release studies showed sustained release of proteins and tamoxifen in different media.  相似文献   

19.
There is increasing interest in atorvastatin and curcumin owing to their potential anticancer activity. A new, accurate and sensitive HPLC method was developed, for the first time, to simultaneously quantify atorvastatin and curcumin in mouse plasma and brain, liver, lung and spleen tissues following protein precipitation sample preparation. The chromatographic separation was achieved in 13 min on a C18 column, at 35°C, using a mobile phase composed of acetonitrile–methanol–2% (v/v) acetic acid (37.5:2.5:60, v/v/v) at a flow rate of 1.0 mL/min. The detection of analytes and internal standard was carried out at 247, 425 and 250 nm, respectively. According to international guidelines, the method was shown to be selective, with lower limits of quantification ranging from 10 to 500 ng/mL for curcumin, and from 100 to 600 ng/mL for atorvastatin, linear over a wide concentration range (r2 ≥ 0.9971) and with acceptable accuracy (bias ± 12.29%) and precision (coefficient of variation ≤13.15%). The analytes were reproducibly recovered at a percentage >81.10% and demonstrated to be stable under various experimental conditions in all biological matrices. This method can be easily applied to in vivo biodistribution studies related to the intranasal administration of atorvastatin and curcumin, separately or simultaneously.  相似文献   

20.
CdS nanocrystals with an average diameter of 16 nm were synthesized in the CTAB/n-C(5)H(11)OH/n-C(6)H(14)/water quaternary microemulsions by a two-step hydrothermal process at 90 and 130 degrees C. The reaction of carbamide and carbon disulfide was employed as the sulfur source for the preparation of CdS nanocrystals. The resulting crystals were characterized with powder X-ray diffraction, transmission electron microscopy, UV-vis absorption spectroscopy, and photoluminescence spectroscopy. A unique core/shell structure of CdS nanocrystals was suggested for the explanation of the interesting phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号