首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycarboxylate-type superplasticizers (PCs) containing different side chains and sulfonic groups have been synthesized, and the effect of side chains and sulfonic groups on their performance in cementitious systems has been intensively investigated by measuring zeta potential, thickness of absorption layer, paste fluidity, rheological properties as well as the setting time in this paper. Results show that the PC containing both short poly(ethylene oxide) (PEO) side chains and long PEO side chains with the molar ratio of 1:1 has a better dispersibility than the PC containing only short PEO side chains or only long PEO side chains in cement suspensions. The shorter the side chain of the PC, the longer the setting time of cement paste incorporating it. An appropriate increase of sulfonic group content is beneficial for the improvement of dispersibility for the PC and leads to no obvious change for the setting time. It also suggests that there is a geometrical balance between the PEO side chains and sulfonic groups for the performance of PC. This work is not only helpful for understanding the relationship of molecular structure of PCs and their performance, but also further designing optimum molecular structure of PC to meet the requirement in different concrete system.  相似文献   

2.
Surface properties of a series of cationic bottle-brush polyelectrolytes with 45-unit-long poly(ethylene oxide) side chains were investigated by phase modulated ellipsometry and surface force measurements. The evaluation of the adsorbed mass of polymer on mica by means of ellipsometry is complex due to the transparency of mica and its birefringence and low dielectric constant. We therefore employed a new method to overcome these difficulties. The charge and the poly(ethylene oxide) side chain density of the bottle-brush polymers were varied from zero charge density and one side chain per segment to one charge per segment and no side chains, thus spanning the realm from a neutral bottle-brush polymer, via a partly charged brush polyelectrolyte, to a linear fully charged polyelectrolyte. The adsorption properties depend crucially on the polymer architecture. A minimum charge density of the polymer is required to facilitate adsorption to the oppositely charged surface. The maximum adsorbed amount and the maximum side chain density at the surface are obtained for the polymer with 50% charged segments and the remaining 50% of the segments carrying poly(ethylene oxide) side chains. It is found that brushlike layers are formed when 25-50% of the segments carry poly(ethylene oxide) side chains. In this paper, we argue that the repulsion between the side chains results in an adsorbed layer that is non-homogeneous on the molecular level. As a result, not all side chains will contribute equally to the steric repulsion but some will be stretched along the surface rather than perpendicular to it. By comparison with linear polyelectrolytes, it will be shown that the presence of the side chains counteracts adsorption. This is due to the entropic penalty of confining the side chains to the surface region.  相似文献   

3.
This study describes the synthesis, characterization, and in vitro evaluation of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-gadolinium (Gd)-doxorubicin (Dox) conjugates. Copolymers of HPMA were derivatized to incorporate side chains for Gd chelation and Dox conjugation. The conjugates were characterized by their side chain contents, T(1) relaxivity (r(1)), stability, and in vitro cytotoxicity. High stability and relaxivity of these conjugates coupled with low toxicity show their potential for monitoring the in vivo fate of HPMA-based drug delivery systems by magnetic resonance imaging techniques.  相似文献   

4.
A series of “hairy-rod” polyimides, BBPA(n), with multiple alkyl side chains was prepared from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 4,4′-biphenyldiamine substituted in the 2,2′-positions with benzoate, which was substituted in the 3,4,5-positions with ether side chains of varying lengths. The number of the methylene units, n, in these alkyl side chains were in even numbers ranging from 8 to 18. Combining techniques of one-dimensional (1D) and 2D wide angle x-ray diffraction, 1D small angle X-ray scattering, differential scanning calorimetry experiments, it was found that this series of “hairy-rod” polyimides possess a micro-phase separation between the backbones and side chains. This led to the formation of ordered structures in two different length scales, of which both are hexagonal packing: one is attributed to the alkyl side chains on the sub-nanometer scale, and another is for the whole polymer chains on the nanometer scale. The development of the hexagonal structure on the sub-nanometer scale was critically dependent upon the lengths of the alkylside chains. Three relaxation processes were captured by dynamic mechanical analysis, i.e., segmental motion of the backbones, α the melting of the side chain crystals, β1, which exits only for the materials with longer side chains(n=18,16); and the subglass relaxation of side chains, β2- The peak relaxation temperature of the α process decreased with increasing the length of side chains, while the one of the β2 process increased. The activation energy of the α relaxation was relatively independent on the length of side chain, whereas, β2 process showed the increasing of activation energy with increasing the length of side chains.  相似文献   

5.
We synthesized dialkoxy-substituted poly[phenylene vinylene]s (dROPPV-1/1, 0.2/1, and 0/1) consisting of two repeating units with different side-chain lengths (methoxy and 3,7-dimethyloctyloxy). These polymers can serve as a model system to clarify roles of aggregates (the sites with ground-state interchain interactions) and the independent chain segments in the well-packed chains (the chain segments that are compactly packed without interaction) in the emission mechanism of conjugated polymers. Due to the packing of polymer chains, films of all of these polymers are accessible to interchain excitations, after which excitons can re-form to result in delayed luminescence. Besides, some chains form aggregates so that the delayed luminescence is no more the ordinary single-chain emission but red-shifted and less structured. Not only the re-formation of these indirect excitons but also the aggregation of chains are facilitated in the polymers with short methoxy side groups, revealing that both packing and aggregation of chain segments require a short spacing between polymer chains. However, the incorporation of other side chains such as the 3,7-dimethyloctyloxy group to dROPPVs is necessary for the formation of aggregates because these long branched side chains can reduce the intrachain order imposed by the short methoxy groups, which accounts for the absence of aggregate emission in the well-studied poly[2,5-dimethoxy-1,4-phenylene vinylene]. This study reveals that the well-packed chains do not necessarily form aggregates. We also show that the photophysical properties and the film morphology of conjugated polymers can be deliberately controlled by fine-tuning of the copolymer compositions, without altering the optical properties of single polymer chains (e.g., as in dilute solutions).  相似文献   

6.
We show here by means of scanning tunneling microscopy (STM) at the liquid/solid interface that paracetamol and benzocaine molecules bearing a long aliphatic chain can be immobilized on highly oriented pyrolitic graphite (HOPG) as perfectly ordered two-dimensional domains extending over several hundreds of nanometers. In both cases, high-resolution STM images reveal that compounds 1 and 2 self-assemble into parallel lamellae having a head-to-head arrangement. The paracetamol heads of 1 are in a zigzag position with entangled n-dodecyloxy side chains while benzocaine heads of compound 2 are perfectly aligned as a double row and have their palmitic side chains on either sides of the head alignment. We attribute the very long-range ordering of these two pro-drug derivatives on HOPG to the combined effects of intermolecular H-bonding on one side and Van der Waals interactions between aliphatic side chains and graphite on the other side. The 2D immobilization of pro-drug derivatives via a non-destructive physisorption mechanism could prove to be useful for applications such as drug delivery if it can be realized on a biocompatible substrate.  相似文献   

7.
Triangular ortho-phenylene ethynylene (o-PE) cyclic trimers represent a novel member of shape-persistent macrocycles. Shape-persistent cyclic structures remain of great interest as molecular components in the fields of supramolecular materials, host-guest chemistry, and materials science. Novel discotic liquid crystalline properties are reported from triangular-shaped o-PE macrocycles containing branched alkoxy- and/or triethylene glycol (TEG) side chains using polarized optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The macrocycles self-assemble into thermotropic rectangular columnar (Colr) (for M1), hexagonal columnar (Colh) (for M2), and discotic nematic (for M3) mesophases at room temperature. This work shows clearly that electron-rich PE macrocycles can form LC materials. Alkyl side chains in M1 promote order, while hydrophilic side chains of M2 generate an amphiphilic structure that provides a different driving force for organization. The ability to create ordered self-assembling materials from these novel electron-rich macrocycles is important in nanotechnology.  相似文献   

8.
Full details of the total synthesis of piericidin A1 and B1 and its extension to the preparation of a series of key analogues are described including ent-piericidin A1 (ent-1), 4'-deshydroxypiericidin A1 (58), 5'-desmethylpiericidin A1 (73), 4'-deshydroxy-5'-desmethylpiericidin A1 (75), and the corresponding analogues 51, 59, 76, and 77 bearing a simplified farnesyl side chain. The evaluation of these key analogues, along with those derived from their further functionalizations, permitted a scan of the key structural features providing new insights into the role of the substituents found in both the pyridyl core as well as the side chain. A strategic late stage heterobenzylic Stille cross-coupling reaction of the pyridyl core with the fully elaborated side chain permitted ready access to the analogues in which each half of the molecule could be systematically and divergently modified. The pyridyl cores were assembled enlisting inverse electron demand Diels-Alder reactions of N-sulfonyl-1-azabutadienes, while key elements of side chain syntheses include an anti selective asymmetric aldol to install the C9 and C10 relative and absolute stereochemistry (for natural and ent-1) and a modified Julia olefination for formation of the C5-C6 trans double bond with convergent assemblage of the side chains.  相似文献   

9.
《Soft Materials》2013,11(1):11-25
Abstract

Molecular dynamics (MD) simulations of model comb‐graft heteropolymers were performed to understand general mechanistic features of coil‐to‐micelle relaxation after instantaneous quench from a nonselective solvent to solvent conditions selective for the backbone monomers and poor for the side‐chain monomers. The systems considered were single bead‐spring molecules with backbones of 30 monomers and 10 equally spaced side chains of 1, 5, 10, or 20 monomers each, immersed in dense liquids of 20,000 simple solvent particles. We find that the coil‐to‐micelle relaxation time, τ r , averaged over 50 independent trajectories for each set of topological parameters considered, decreases with increasing side‐chain length. A two‐stage relaxation mechanism is observed: (1) a fast collapse and aggregation of neighboring side chains to form a chain of “protomicelles,” followed by (2) a slow intramolecular aggregation of protomicelles. Fast collapse dominates for molecules with relatively longer side chains due to relatively higher probabilities of initial contacts between side‐chain monomers in different side chains, while slow intramolecular aggregation dominates for molecules with relatively shorter side chains.  相似文献   

10.
Three series of ethynylhelicene oligomers with different side chains were synthesized: (P)-bD-n (n = 2-6) with branched alkyloxycarbonyl side chains; (P)-S-n (n = 2-7) with decylsulfanyl side chains; and (P)-DF-n (n = 4, 6, 8, 10) with alternating decyloxycarbonyl and perfluorooctyl side chains. The double helix formation of these side chain derivatives was compared to that of (P)-D-n with decyloxycarbonyl side chains. CD, UV-vis, and vapor pressure osmometry (VPO) studies showed that (P)-bD-n formed double helices as well as (P)-D-n. CD studies in trifluoromethylbenzene at different temperatures and concentrations indicated that the stability of the aggregate of (P)-bD-6 was similar to that of (P)-D-6. Bulkiness of side chains had little effect on aggregation, which indicated that π-π interactions of the aromatic moiety were essential for double helix formation. (P)-S-n were random coils in all solvents examined except in trifluoromethylbenzene. Whereas (P)-D-7 formed a double helix at 1 × 10(-3) M in toluene, (P)-S-7 was a random coil. This result indicated that the double helix forming ability of (P)-S-n was substantially lower than that of (P)-D-n. Based on the previous observation that (P)-F-n formed a more stable double helix than (P)-D-n, the order of stability may be summarized as follows: (P)-F-n > (P)-D-n and (P)-bD-n >(P)-S-n. The lower stability of (P)-S-n compared to that of (P)-F-n was ascribed to the softness and/or the electron-rich nature at the m-phenylene moiety. (P)-DF-n did not form a stable double helix. It was speculated that a regular alternating arrangement of soft/hard or electron-rich/deficient moieties is important for stable double helix formation. Side chains of ethynylhelicene oligomers can play significant roles in determining the stability of double helices.  相似文献   

11.
BACKGROUND: Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these beta-lactams, most often through bacterial expression of beta-lactamases, threatens public health. To understand how beta-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because beta-lactams form covalent adducts with beta-lactamases. This has complicated functional analyses and inhibitor design. RESULTS: To investigate the contribution to interaction energy of the key amide (R1) side chain of beta-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine beta-lactamases. Therefore, binding energies can be calculated directly from K(i) values. The K(i) values measured span four orders of magnitude against the Group I beta-lactamase AmpC and three orders of magnitude against the Group II beta-lactamase TEM-1. The acylglycineboronic acids have K(i) values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of beta-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of beta-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to beta-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 A and 1.75 A resolution; these structures suggest interactions that are important to the affinity of the inhibitors. CONCLUSIONS: Acylglycineboronic acids allow us to begin to dissect interaction energies between beta-lactam side chains and beta-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in beta-lactam inhibitors or beta-lactam substrates of serine beta-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.  相似文献   

12.
The synthesis of stiff-chain poly(1,4-phenylene terephthalamide)s substituted by two as well as by four flexible side chains per repeating unit is described. The solubility of the materials bearing only two side chains is still very low. Appending of four side chains leads to polyamides which dissolve in common organic solvents. All polyamides reported herein form layered structures in the solid state as well as in the mesophase. Polyamides with two side chains have a very weak tendency for crystallization and do not exhibit a transition to the isotropic state even for the longest side chains. Polyamides with four side chains show three reversible thermal transitions: a disordering transition of the side chains, a transition to a layered, smectic-like mesophase, and finally the transition to an isotropic melt. It is shown that the phase behavior of these materials is mainly governed by the strong segregation of main- and side-chains which can be compared best to the microphase separation in block copolymers. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
《Liquid crystals》1997,23(1):137-146
The structure of poly(L-lysine)s containing between 20% and 100% of azobenzene units in the side chains has been studied by X-ray diffraction, between room temperature and 250 C. Except for samples having very low contents of azobenzene, the polymers are found to exhibit mesomorphic structures of the smectic A1 type deriving from the beta -structure of polypeptides. For polymers in which all lysine residues were substituted, the polypeptide main chains are arranged in layers corresponding to the sheets of a polypeptide 'antiparallel' beta -structure, and the side chains are perpendicular to the smectic layers. For polymers containing both substituted and free lysine side chains, each smectic layer results from the superposition of two layers: one layer contains the free lysine side chains; the other contains the azobenzenemodified lysine side chains and the polypeptide main chains that are arranged in 'antiparallel' beta -structures. All polymers exhibit only one smectic A mesophase as a function of temperature. The thickness of the smectic layers increases with increasing temperature until a thickness is reached that corresponds to the maximum interaction between the azobenzene mesogens in their trans -configuration.  相似文献   

14.
《Liquid crystals》2001,28(5):657-661
2,3,6,7,10,11-Hexasubstituted triphenylenes have been synthesized that contain a mixture of hydrophobic (C6H13O) and hydrophilic (CH3OCH2CH2OCH2CH2O) side chains. At one extreme HAT6 (1a) (six hydrophobic chains) shows thermotropic behaviour and at the other TP6EO2M (1e) (six hydrophilic chains) shows lyotropic behaviour. Of the triphenylenes with a mixture of hydrophobic and hydrophilic side chains, only the triphenylene with one hydrophilic side chain and five hydrophobic side chains (1b) gives a thermotropic columnar phase. None of the others show liquid crystal behaviour. However, all of these triphenylenes form binary 1:1 compounds when mixed with PDQ9 (2a) and with PTP9 (2b). These CPI (complimentary polytopic interaction) stabilized compounds give thermotropic hexagonal columnar phases over wide temperature ranges.  相似文献   

15.
Peptides of homochiral α‐aminoxy acids of nonpolar side chains can form a 1.88‐helix. In this paper, we report the conformational studies of α‐aminoxy peptides 1 , 2 , 3 , which have functionalized side chains, in both nonpolar and polar solvents. 1H NMR, XRD, and FTIR absorption studies confirm the presence of the eight‐membered‐ring intramolecular hydrogen bonds (the N‐O turns) in nonpolar solvents as well as in methanol. CD studies of peptides 1 , 2 , 3 in different solvents indicate that a substantial degree of helical content is retained in methanol and acidic aqueous buffers. The introduction of functionalized side chains in α‐aminoxy peptides provides opportunities for designing biologically active peptides.  相似文献   

16.
As a highly reactive tactic vinyl polymer, syndiotactic poly(methacrylic acid hydrazide) (s-PMH) was prepared from syndiotactic poly(methyl methacrylate) (s-PMMA) by hydrazinolysis. The s-PMH served as the starting polymer to prepare other tactic vinyl homopolymers having optically active functional carboxylic acids or N-protected amino acids as side chains. The condensation of the acids was carried out in water by water-soluble carbodiimides. Conversion was followed by pH and the resulting homopolymers characterized by 1H- and 13C-NMR spectroscopy. The NMR-spectra were assigned by comparison with low molecular weight model compounds, derived from pivalic acid hydrazide. In a third on-polymer reaction, the OH-groups present in the side chains of some of the polymers were employed for adding an optically active isocyanate to yield branched side chains.  相似文献   

17.
Polymer bottlebrushes with monodisperse oligoproline side chains were efficiently synthesized, and the conformation of the peptide side chains in different solvents was investigated. Polymers with number-average degrees of polymerization (DPn) of 89 and 366 were obtained by polymerization of the macromonomer in iPrOH/MeCN (1:1) and hexafluoroisopropanol, respectively. Circular dichroism (CD) spectra of the bottlebrush polymers in the neutral and charged states reveal that the oligoproline side chains attain stable polyproline II (PPII) helical conformations not only in aqueous solution, but also in aliphatic alcohol solutions. Dense attachment of oligopeptides onto a linear polymer chain did not lead to an increase in helix content. The possible effects of the main-chain length on the conformational stability were examined. The switching between the polyproline I (PPI) and PPII helical conformations for the oligoproline side chains in aliphatic alcohol solutions is believed to be inhibited by the overcrowded structure in the polymer bottlebrushes.  相似文献   

18.
The influence of side chain length and sulfonyl moiety on the molecular structures and wettability behavior of poly(oxyethylene)s with alkyl sulfonyl side chains (CH(3)-nSE, n = 1, 2, 3, 4, 5, 6, 8, 10), where n is the number of the carbon atom in the n-alkyl side group, was investigated. CH(3)-nSEs having shorter side chains (n < 5) do not have ordered structures, and their surfaces were found to be more polar than those of CH(3)-nSEs having longer side chains (n ≥ 5). The CH(3)-nSEs having longer side chains show double-layered lamellar structures (n ≥ 5) with well-aligned side chains and low surface energies in the range 21.2-25.8 mN/m. Interestingly, stick-slip behavior was observed only on the surfaces of CH(3)-3SE and CH(3)-4SE when water was used as the test liquid. The surface deformation at the three-phase line was generated from interactions between water and sulfonyl groups, and the optimum side chain lengths were believed to cause the stick-slip behavior.  相似文献   

19.
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.  相似文献   

20.
王君  黄继庆  黄焰根  卿凤翎 《有机化学》2009,29(12):1969-1974
应用含短氟碳链的功能性聚合物可以避免因使用含长氟碳链化合物给环境带来的潜在危害. 以全氟丁基磺酰氟为原料, 通过磺酰化和N-烷基化合成带有端羟基的中间体4, 再通过2,2-二溴甲基氧杂环丁烷(2)与4的Williamson醚化反应合成了含全氟丁基磺酰胺侧基的新型氧杂环丁烷衍生物1a和1b. 以5,5-二甲基海因为原料, 采用类似的合成路线, 合成了带海因侧基的新型氧杂环丁烷单体6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号