首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The adsorption of some biogenic amines (histamine, tryptamine, and tyramine) on the surface of highly dispersed silica from aqueous solutions is studied as a function of pH and ionic strength. It is established that biogenic amines in a protonated form interact with dissociated silanol groups of SiO2 surface forming outer-sphere complexes. The constants of the formation of surface complexes are calculated.  相似文献   

3.
The results of a systematic investigation on the influence of different alkali ion species on the surface charge density, 0, of spherical silica particles (AEROSIL 300) in the pH range between 4 and 8 and with electrolyte concentrations from 0.005 M to 0.3 M are presented. The accuracy of the data may be described by a residual deviation,s( 0 m ), including at least four single measurements:s( 0 m )>0.2C/cm2. The alkali sequence found for the spherical particles is in agreement with data for porous silica published by other authors.  相似文献   

4.
Within the framework of the development of an optical immunosensor, the sol-gel process has been used to prepare a thin film of amorphous silica, deposited by spin coating on a gold-coated glass slide, and possessing chemically active functional groups (SH, NH2...). After activation of the sol-gel film in aqueous buffers by a bifunctional coupling agent, biological molecules such as antibodies could be covalently bonded on or inside the sol-gel film. Therefore, the behavior in aqueous solutions of the functionalized silica thin films has been analysed by Surface Plasmon Resonance (SPR) and guided wave propagation. Results show a modification of the thickness and of the refractive index of the silica film. Pore size range has been deduced by the infiltration of different molecular weight dextran molecules diluted in water into the sol-gel material. Immunosassays have demonstrated biological activity of antibodies which are covalently linked to or entraped in the sol-gel film.  相似文献   

5.
The optical absorption spectra observed by pulse radiolysis of alkaline (NaOH, KOH, RbOH), chloride (LiCl, MgCl2, CaCl2, NaCl, KCl) and perchloride (NaClO4) solutions at temperature 298 K are reported. Some measurements were performed at low temperature with aqueous ionic glasses. With increasing concentration of the above solutes a uniform blue-shift of the maximum of the solvated electron (e¯sol) absorption band is observed. Near infrared (NIR) spectroscopy was so used to examine the properties of water in several concentrated electrolyte solutions. It is shown that some inorganic electrolytes (e.g. NaOH, NaClO4) substantially change the water structure whereas some others (e.g. LiCl, CaCl2) influence water structure insignificantly. The correlation between the ability of excess electron trapping in electrolyte solutions and water structure deduced from NIR spectroscopy is discussed.  相似文献   

6.
Single ion activities in aqueous H2SO4 have been calculated from the mean ionic activity coefficients of H2SO4, the solubilities of PbSO4 and the degrees of the second dissociation of H2SO4 in these solutions by employing a new extra-thermodynamic assumption. The hydrogen ion activities thus obtained are compared with the corresponding acidity function values based on different classes of acid-base indicators.  相似文献   

7.
The solubilities of thirteen iodates of rare earth metals in aqueous and aqueous alcoholic solvent mixtures at 25°C were measured. Methanol and ethanol were used as the alcoholic components, and the alcohol concentrations in solvent mixtures were between 0–40 mass percent. From the solubilities measured in this study and the published data, the recommended solubility values of eleven iodates of rare earth metals [Ln(IO3)3: Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb] in water at 25°C were decided by applying the guidelines of the IUPAC Solubility Data Project, and the solubilities of two iodates [Ln(IO3)3: Ce and Lu] are designated as tentative values. The change in solubility of lanthanide iodates in aqueous and aqueous alcoholic solvent mixtures as a function of lanthanide atomic number is discussed. The logarithm of the solubility decreases almost linearly with the reciprocal of the dielectric constant of the solvent mixture, as expected from Born's equation and its modifications.Presentation to First International Symposium on Solubility Phenomena, University of Western Ontario, London, Ontario, August 21–23, 1984.  相似文献   

8.
The solubilities of methane were measured in water and aqueous solutions of triethylenediamine (TED), triethylenediamine hydrochloride (TED·HCl), and HCl at several concentrations up to 1M at 5° intervals from 5 to 25°C. Methane solubilities in solutions of TED·HCl and HCl are lower than those in water and decrease with increasing cosolute concentration. In contrast, the solubilities in TED solutions are greater than those in water and increase with increasing TED concentration. The order of methane solubilities at 25°C in water and in 0.5M aqueous solutions is TED>H2O>HCl>TED·HCl with Ostwald coefficients of 3.57×10–2, 3.44×10–2, 3.26×10–2, and 3.19×10–2, respectively, and with an experimental precision of about ±0.2×10–3. Thermodynamic functions for the transfer of methane from water to 0.25, 0.50, and 0.75M aqueous solutions have been calculated on the molar concentration scale. The free energies of transfer are compared with previous results for methane in aqueous solutions of tetraalkylammonium halides.  相似文献   

9.
Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG dispersion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Morphology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents. Supported by the National Natural Science Foundation of China (Grant No. 50773068) and Natural Science Foundation of Zhejiang Province (Grant No. Y407011)  相似文献   

10.
Conclusions When solutions of magnesium chloride and sodium metasilicate, taken in the ratio 6MgCl28Na2SiO3, are poured together, chiefly a hydrated magnesium silicate with an admixture of amorphous silica SiO2·nH2O is formed.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2178–2181, October, 1970.  相似文献   

11.
Luo W  Zhu L  Yu C  Tang H  Yu H  Li X  Zhang X 《Analytica chimica acta》2008,618(2):147-156
Very severe reaction conditions are required in the conventional synthesis of molecularly imprinted polymers (MIPs), which is unfavorable to their applications in chemical separation and analysis. A simple surface molecular imprinting approach was developed to synthesize MIP-coated SiO2 micro-particles in aqueous solutions. The 1H NMR and UV-vis spectroscopic analysis indicated that via hydrogen bonding, the functional monomer (o-phenylenediamine) can associate with the target (template) 2,4-dinitrophenol (2,4-DNP), as a model compound of organic pollutants, to form a precursor in aqueous solution. The copolymerization of this precursor and the free monomer was performed in the aqueous suspension of surface modified SiO2 particles, leading to the formation of MIP-coated SiO2 micro-particles. The MIP-coated silica particles were characterized with FT-IR, TGA, and UV-vis solid-state reflection spectroscopy, and were further demonstrated to have high adsorption capacity, excellent selectivity and site accessibility for 2,4-DNP. The new absorbent was successfully used in solid-phase extraction (SPE) to selectively enrich and determine 2,4-DNP in aqueous samples. The experimental results indicated that the MIP-SPE column yielded recoveries higher than 92% with R.S.D. <2.8%, much better than the commercial C18-SPE column, which produced a recovery less than 30% with R.S.D. <3.0%.  相似文献   

12.
The Partial Charge Model was developed to predict the hydroxylation, polymerization, and precipitation of ions. The purpose of this study is to evaluate the Partial Charge Model for describing the polymerization of silica in aqueous solutions. The Partial Charge Model predicts the stability of ions and complexes based on the assumption that the stable species will have the same electronegativity as the mean electronegativity of the solution. The silica system was chosen for model validation because of the rare availability of self-consistent thermodynamic data on many dissolved but polymerized silicate anions, including both linear and cyclical species. The electronegativity of each species was calculated using the Partial Charge Model and the results were plotted against the stability constants for the ions. The silicate anions segregated into groups on the plot based on the number of charges per silicon atom in the polymer. Plots of the log of the stability constant versus the change in electronegativity produced a linear relationship for the silica polymers containing one negative charge per silicon atom, which resulted in an r 2 of 0.9978. Thus, the Partial Charge Model successfully describes the thermodynamics of silica polymerization in aqueous solution for species that are sufficiently alike, but was not accurate for all silica species.  相似文献   

13.
Rigidity (G) of colloidal crystals in organic solvents of acetonitrile and nitrobenzene has been measured by reflection spectroscopy in sedimentation equilibrium. The colloidal spheres used are the silica spheres (136 nm in diameter) modified on their surfaces with polymers, poly(maleic anhydride-co-styrene) [P(MA-ST)], poly(methyl methacrylate) (PMMA), or polystyrene (PST). Log G increases linearly with the slope of unity as log N (number density of colloidal spheres) increases. The mean values of the b-factor, which is the fluctuation parameter in crystal lattices and should be smaller than 0.1 according to the Lindeman's rule, are 0.045±0.003, 0.039±0.007, and 0.038±0.003 for P(MA-ST)/SiO2, PMMA/SiO2, and PST/SiO2, respectively. These values are larger than that of colloidal crystals of mother silica spheres in the deionized aqueous suspension, 0.028. These results support the important role of the excluded volume effects from the polymer layers formed around the silica surfaces. However, contribution of the excluded volume effects from the electrical double layers formed around the spheres in the organic solvents is also effective in the colloidal crystallization. Electronic Publication  相似文献   

14.
In the present study, the flow-through silica, featured with hierarchical pores, i.e., tunable mesopores and penetrable macropores, was attempted as the chromatographic stationary phase matrix to immobilize gold nanoparticles (AuNPs). It was first modified by mercapto groups (named as SiO2-SH), and then by AuNPs (named as SiO2-S-Au). Thanks to the characteristic macropores, the column backpressure of SiO2-S-Au was comparable to SiO2-SH, which effectively overcame the difficulty of high column backpressure upon the nanoparticles were introduced to the chromatographic matrix. Both the reversed-phase and hydrophilic interaction liquid chromatographic performance were observed on these two columns but with different selectivities. Hydrophobic, hydrophilic, hydrogen bond and electrostatic interactions between the SiO2-S-Au stationary phase and analytes could contribute to the retention. The SiO2-S-Au column showed excellent aqueous compatibility by “Stop-flow” test with the relative standard deviations (RSD) of analyte’s k (capacity factor) values from 0.59% to 2.88%. The reproducibility of SiO2-S-Au was acceptable with RSDs of analyte’s k values in the range of 3.13%-5.03%. In addition, compared with the SiO2-SH column, the SiO2-S-Au column had better separation performance and selectivity. The results demonstrated that the flow-through silica was a promising matrix for nanoparticles with low backpressure and different selectivities.  相似文献   

15.
Chao Wang 《Talanta》2009,77(4):1358-249
This paper presents the synthesis of aqueous CdTe QDs embedded silica nanoparticles by reverse microemulsion method and their applications as fluorescence probes in bioassay and cell imaging. With the aim of embedding more CdTe QDs in silica spheres, we use poly(dimethyldiallyl ammonium chloride) to balance the electrostatic repulsion between CdTe QDs and silica intermediates. By modifying the surface of CdTe/SiO2 composite nanoparticles with amino and methylphosphonate groups, biologically functionalized and monodisperse CdTe/SiO2 composite nanoparticles can be obtained. In this work, CdTe/SiO2 composite nanoparticles are conjugated with biotin-labeled mouse IgG via covalent binding. The biotin-labeled mouse IgG on the CdTe/SiO2 composite nanoparticles surface can recognize FITC-labeled avidin and avidin on the surface of polystyrene microspheres by protein-protein binding. Finally, the CdTe/SiO2 composite nanoparticles with secondary antibody are used to label the MG63 osteosarcoma cell with primary antibody successfully, which demonstrates that the application of CdTe/SiO2 composite nanoparticles as fluorescent probes in bioassay and fluorescence imaging is feasible.  相似文献   

16.
The impact of nanoconfinement introduced by nanoparticles on polymer crystallization has attracted extensive attention because it plays an important role in the ultimate properties of polymer nanocomposites. In this study, interfacial and spatial confinement effects of silica (SiO2) nanoparticles on the crystallization behaviors of poly(ethylene oxide) (PEO)/SiO2 composites were systematically investigated by changing the size and concentration of SiO2 in PEO matrix. The composites with high silica loadings exhibit two crystallization peaks of PEO as determined by differential scanning calorimetry. The first peak at 7–43 °C is related to the bulk PEO, while the second peak at ?20 to ?30 °C is attributed to the restricted PEO segments. Three‐layer (amorphous, interfacial, and bulk) model is proposed to interpret the confined crystallization of PEO/SiO2 composites, which is supported by the results of thermogravimetric analysis and solid‐state 1H nuclear magnetic resonance. In amorphous layer, most PEO segments are directly adsorbed on SiO2 surface via hydrogen bonding. The interfacial PEO layer, which is nonuniform, is composed of crystallizable loops and tails extending from amorphous layer. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 414–423  相似文献   

17.
We have studied the photocatalytic activity of porous silicas (silica gel, mesoporous sol-gel films) modified by benzophenone molecules, in the reaction of reduction of gold from tetrachloroaurate ions. Stable colloids of nanosized gold were obtained as a result of irradiating aqueous alcoholic solutions of HAuCl4·3H2O in the presence of the photocatalyst SiO2-BP using as the stabilizers: a colloidal solution of silica (Ludox) or the surfactant sodium dodecyl sulfate (SDS). We have studied the effect of the stabilizer on the kinetics of the photoreduction reaction, and also on the shape and size of the nanoparticles formed. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 41, No. 6, pp. 348–353, November–December, 2005.  相似文献   

18.
The D/H ratios of hydrogen gas in equilibrium with aqueous sodium chloride solutions of 2, 4 and 6 molalities were determined within the range 10 to 95°C, using a hydrophobic platinum catalyst. With each of the different sodium chloride concentrations, the hydrogen isotope effect between the solution and pure water changes linearly with the square of the reciprocal temperature. On the basis of the results for hydrogen isotope fractionation observed in this study, and those of hydrogen isotope fractionation between pure water and vapor, it is concluded that the structure of the aqueous sodium chloride solution does not change significantly with temperature. The hydrogen isotope effect is evidently different from the results of vapor pressure isotope effects (VPIE) on sodium chloride solutions measured on separated isotopes. The difference between the present work and the VPIE studies is probably due to a non-ideal behavior in a mixture of isotopic water molecules and/or to a H2O-D2O disproportionation reaction in sodium chloride solutions. The distinction between the latter two mechanisms can not be differentiated at present.  相似文献   

19.
This paper is continuation of the study concerning the solubility-temperature dependence data for some phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in two nitrate salts (KNO3 and NaNO3) aqueous solutions. The solubilities of PhC were determined in the temperature ranging from (293.15 to 318.15) K. It has been observed that the solubility, in aqueous nitrate solutions, increases with increasing temperature. Results showed that alkali metal nitrate has a salting-out effect on the solubility of PhC. The effect of the anion of the electrolyte on the solubility of PhC is observed by comparing these results with values reported in the previous papers for the effect of LiCl, NaCl and KCl. For each cation, the solubilites of the phenolic compounds are higher with nitrate anion than with chloride anion. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data were accurately correlated by a semi empirical equation. The standard molar Gibbs free energies of transfer of PhC (ΔtrG°) from pure water to aqueous solutions of the nitrate salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive ΔtrG° value which is mainly of enthalpic origin.  相似文献   

20.
Fumed oxide alumina/silica/titania was studied in comparison with fumed alumina, silica, titania, alumina/silica, and titania/silica by means of XRD, 1H NMR, IR, optical, dielectric relaxation, and photon correlation spectroscopies, electrophoresis, and quantum chemical methods. The explored Al2O3/SiO2/TiO2 consists of amorphous alumina (22 wt%), amorphous silica (28 wt%), and crystalline titania (50 wt%, with a blend of anatase (88%) and rutile (12%)) and has a wide assortment of Brønsted and Lewis acid sites, which provide a greater acidity than that of individual fumed alumina, silica, or titania and an acidity close to that of fumed alumina/silica or titania/silica. The changes in the Gibbs free energy (ΔG) of interfacial water in an aqueous suspension of Al2O3/SiO2/TiO2 are close to the ΔG values of the dispersions of pure rutile but markedly lower than those of alumina, anatase, or rutile covered by alumina and silica. The zeta potential of Al2O3/SiO2/TiO2 (pH of the isoelectric point (IEP) equals ≈3.3) is akin to that of fumed titania (pH(IEPTiO2) ≈ 6) at pH > 6, but it significantly differs from the ζ of fumed alumina (pH(IEPAl2O3) ≈ 9.8) at any pH value as well as those of fumed silica, titania/silica, and alumina/silica at pH < 6. The particle size distribution in the diluted aqueous suspensions of Al2O3/SiO2/TiO2 studied by means of photon correlation spectroscopy depends relatively slightly on pH in contrast to the titania/silica or alumina/silica dispersions. Theoretical calculations of oxide cluster interaction with water show a high probability of hydrolysis of Al–O–Ti and Si–O–Ti bonds strained at the interface of alumina/titania or silica/titania due to structural differences in the lattices of the corresponding individual oxides. Ab initio calculated chemical shift δH values of H atoms in different hydroxyl groups at the oxide clusters and in bound water molecules are in agreement with the 1H NMR data and show a significant impact of charged particles (H3O+ or OH) on the average δH values of water droplets with (H2O)n at n between 2 and 48.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号