首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The boundary control of MKdV-Burgers equation was considered by feedback control on the domain [0,1].The existence of the solution of MKdV-Burgers equation with the feedback control law was proved.On the base,priori estimates for the solution was given.At last,the existence of the weak solution of MKdV-Burgers equation was proved and the global-exponential and asymptotic stability of the solution of MKdV-Burgers equation was given.  相似文献   

2.
The turbulent flow of vertical plane wall plume with concentration variation was studied with the finite analytical method. The k-epsilon model with the effect of buoyancy on turbulent kinetic energy and its dissipation rate was adopted. There were similarity solutions in the uniform environment for the system of equations including the equation of continuity, the equation of momentum along the flow direction and concentration, and equations of k, epsilon. The finite analytic method was applied to obtain the similarity solution. The calculated data of velocity, relative density difference, the kinetic energy of turbulence and its dissipation rate distribution for vertical plane plumes are in good agreement with the experimental data at the turbulent Schmidt number equal to 1.0. The variations of their maximum value along the direction of main flow were also given. It shows that the present model is good, i.e., the effect of buoyancy on turbulent kinetic energy and its dissipation rate should be taken into account, and the finite analytic method is effective.  相似文献   

3.
A strategy for spacecraft autonomous rendezvous on an elliptical orbit in situation of no orbit information is developed. Lawden equation is used to describe relative motion of two spacecraft. Then an adaptive gain factor is introduced, and an adaptive control law for auton- omous rendezvous on the elliptical orbit is designed using Lyapunov approach. The relative motion is proved to be ultimately bounded under this control law, and the final relative position error can achieve the expected magnitude. Simulation results indicate that the adaptive control law can realize autonomous rendezvous on the elliptical orbit with relative state information only.  相似文献   

4.
The elastic/viscoplastic constitutive equation which describes deformation law ofmetal materials was suggested based on no-yield-surface concept and thermal activationtheory of dislocation.The equation which takes account of effects of strain-rate.strainhistory,strain-rate history,hardening and temperature has stronger physical basis.Comparison of the theoretical prediction with experimental results of mechanicalbehaviours of Ti under conditions of uniaxial stress and room temperature shows goodconsistency.  相似文献   

5.
MICROCOSMIC BOUND THEOREM OF DAYCY'S LAW AND ITS APPLICATION   总被引:1,自引:0,他引:1  
By combining Chapman-Enskog expansion with the BGK approximation to Baltzmann equation and Navier-Stokes equation was obtained. And an expression of Darcy‘ s law was obtained through taking variable average over Navier-Stokes equation on some representative space in porous media, and finally an example was taken to prove its reliability.  相似文献   

6.
Research on particulate characteristics has been an important frontier in physics and chemistry during the past decades. It has however been mostly focused on granular materials with short-range interactions. In this work, it was found that the power law of particle size distribution applied to the long-range interacting system of floating dust in air, from which we deduced that self-organized criticality might hold for floating dust just as granular materials with short-range interactions. This feature may reveal underlying kinetic mechanisms, important in dispersed particle systems. In industry, power law of size distribution of dispersed particles can be used to investigate the change of dust size, and the power law parameter could be taken as an important index for dust separation.  相似文献   

7.
In this paper, a revisiting Hughes' dynamic continuum model is used to investigate and predict the essential macroscopic characteristics of pedestrian flow, such as flow, density and average speed, in a two dimensional continuous walking facility scattered with a circular obstruction. It is assumed that pedestrians prefer to walk a path with the lowest instantaneous travel cost from origin to destination, under the consideration of the current traffic conditions and the tendency to avoid a high-density region and an obstruction. An algorithm for the pedestrian flow model is based on a cellcentered finite volume method for a scalar conservation law equation, a fast sweeping method for an Eikonal-type equation and a second-order TVD Runge-Kutta method for the time integration on unstructured meshes. Numerical results demonstrate the effectiveness of the algorithm. It is verified that density distribution of pedestrian flow is influenced by the position of the obstruction and the path-choice behavior of pedestrians.  相似文献   

8.
Based on the Coriolis acceleration and the Lagrangian strain formula, a gen- eralized equation for the transverse vibration system of convection belts is derived using Newton's second law. The method of multiple scales is directly applied to the govern- ing equations, and an approximate solution of the primary parameter resonance of the system is obtained. The detuning parameter, cross-section area, elastic and viscoelastic parameters, and axial moving speed have a significant influences on the amplitudes of steady-state response and their existence boundaries. Some new dynamical phenomena are revealed.  相似文献   

9.
A mathematical model is established to describe a contact problem between a deformable body and a foundation. The contact is bilateral and modelled with a nonlocal friction law, in which adhesion is taken into account. Evolution of the bonding field is described by a first-order differential equation. The materials behavior is modelled with a nonlinear viscoelastic constitutive law. A variational formulation of the mechanical problem is derived, and the existence and uniqueness of the weak solution can be proven if the coefficient of friction is sufficiently small. The proof is based on arguments of time-dependent variational inequalities, differential equations, and the Banach fixed-point theorem.  相似文献   

10.
Electronic transport properties can be influenced by the applied electromagnetic fields in conductive materials. The change of the electron distribution function evoked by outfields obeys the Boltzmann equation. In this paper, a general law of heat conduction considering the non-uniform electromagnetic effect is developed from the Boltzmann equation. An analysis of the equation leads to the result that the electric field gradient and the magnetic gradient in the conductive material are responsible for the influences of electromagnetic fields on the heat conduction process. A physical model is established and finite element numerical simulation reveals that heat conduction can be increased or delayed by the different directions of the electric field gradient, and the existence of the magnetic gradient always hinders heat conduction.  相似文献   

11.
This paper investigates the influences of higher order viscoelasticity and the inhomogeneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium, caused by the presence of a transient radial force or twist on the surface of a cylindrical hole with circular cross section. Following Voigt's model for higher order viscoelasticity, the nonvanishing stress components valid for a transversely isotropic and higher order viscoelastic solid medium have been deduced in terms of radial displacement component. Considering the power law variation of elastic and viscoelastic parameters, the stress equation of motion has been developed. Solving this equation under suitable boundary conditions, due to transient forces and twists, radial displacement and relevant stress components have been determined in terms of modified Bessel functions. The problem for the presence of transient radial force has been numerically analysed. Modulations of displacement and stresses due to different order of viscoelasticity and inhomogeneity have been graphically depicted. The numerical study of the disturbance caused by the presence of twist on the surface may be similarly done but is not pursued in this paper.  相似文献   

12.
In this paper, the influence of an exponential volume fraction law on the vibration frequencies of thin functionally graded cylindrical shells is studied. Material properties in the shell thickness direction are graded in accordance with the exponential law. Expressions for the strain-displacement and curvature-displacement relationships are taken from Love's thin shell theory. The Rayleigh-Ritz approach is used to derive the shell eigenfrequency equation. Axial modal dependence is assumed in the characteristic beam functions. Natural frequencies of the shells are observed to be dependent on the constituent volume fractions. The results are compared with those available in the literature for the validity of the present methodology.  相似文献   

13.
In this paper the Auerbach's scaling law of Hertzian fracture induced by a spherical indenter pressing on a brittle solid is studied. In the analysis, the singular integral equation method is used to analyze the fracture behavior of the Hertzian contact problem. The results show that the Auerbach's constant sensitively depends on the Poisson's ratio, and the effective Auerbach's domain is also determined for a given value of the Poisson's ratio.  相似文献   

14.
Soft matters are observed anomalous viscosity behaviors often characterized by a power law frequency-dependent attenuation in acoustic wave propagation.Recent decades have witnessed a fast growing research on developing various models for such anomalous viscosity behaviors,among which one of the present authors proposed the modified Szabo’s wave equation via the positive fractional derivative.The purpose of this study is to apply the modified Szabo’s wave equation to simulate a recent ultrasonic imaging technique called the clinical amplitudevelocity reconstruction imaging(CARI) of breast tumors which are of typical soft tissue matters.Investigations have been made on the effects of the size and position of tumors on the quality of ultrasonic medical imaging.It is observed from numerical results that the sound pressure along the reflecting line,which indicates the detection results,varies obviously with sizes and lateral positions of tumors,but remains almost the same for different axial positions.  相似文献   

15.
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.  相似文献   

16.
To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string, the method of multiple scales is applied directly to the nonlinear partial differential equation that governs the transverse vibration of the string. To derive the governing equation, Newton‘s second law, Lagrangean strain, and Kelvin‘s model are respectively used to account the dynamical relation, geometric nonlinearity and the viscoelasticity of the string material. Based on the solvability condition of eliminating the secular terms, closed form solutions are obtained for the amplitude and the existence conditions of nontrivial steady-state response of the principal parametric resonance. The Lyapunov linearized stability theory is employed to analyze the stability of the trivial and nontrivial solutions in the principal parametric resonance. Some numerical examples are presented to show the effects of the mean transport speed, the amplitude and the frequency of speed variation.  相似文献   

17.
Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid- ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para- metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.  相似文献   

18.
The nonlinear combined resonance problem of a ferromagnetic circular plate in a transverse alternating magnetic field is investigated. On the basis of the deformation potential energy, the strain potential energy, and the kinetic energy of the circular plate, the Hamilton principle is used to induce the magnetoelastic coupling transverse vibration dynamical equation of the ferromagnetic circular plate. Based on the basic electromagnetic theory, the expressions of the magnet force and the Lorenz force of the circular plate are presented. A displacement function satisfying clamped-edge combined with the Galerkin method is used to derive the Duffing vibration differential equation of the circular plate. The amplitude-frequency response equations of the system under various combined resonance forms are obtained by means of the multi-scale method, and the stability of the steady-state solutions is analyzed according to the Lyapunov theory.Through examples, the amplitude-frequency characteristic curves with different parameters, the amplitude of resonance varying with magnetic field intensity and excitation force,and the time-course response diagram, phase diagram, Poincar′e diagram of the system vibration are plotted, respectively. The effects of different parameters on the amplitude and stability of the system are discussed. The results show that the electromagnetic parameters have a significant effect on the multi-valued attribute and stability of the resonance solutions, and the system may exhibit complex nonlinear dynamical behavior including multi-period and quasi-periodic motion.  相似文献   

19.
According to the hypothesis that the dissipation of turbulent kinetic energy satisfieslog-normal distribution,a stochostic model of dissipation is provided and the Langevinmodel of velocity is modified Then a joint Pdf equation of turbulent vilocity anddissipation is derived.we solve numerically the joint Pdf equation using Monte Carlomethod and obtain satisfactory results for decaying turbulence and homogeneous turbulentshear flow.The preliminary results show that the model is well working.  相似文献   

20.
Numerical simulation of gas-solid flow in a two-dimensional fluidized bed with an inclined jet was performed. The numerical model is based on the two-fluid model of gas and solids phase in which the solids constitutive equations are based on the kinetic theory of granular flow. The improved ICE algorithm, which can be used for both low and high-velocity fluid flow, were used to solve the model equations. The mechanism of jet formation was analyzed using both numerical simulations and experiments. The emergence and movement of gas bubbles were captured numerically and experimentally. The influences of jet velocity, nozzle diameter, nozzle inclination and jet position on jet penetration length were obtained. A semi-empirical expression was derived and the parameters were correlated from experimental data. The correlation equation, which can be easily used to obtain the inclined jet penetration length, was compared with our experimental data and published correlation equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号