共查询到20条相似文献,搜索用时 62 毫秒
1.
D. G. Chihichin V. A. Kotseruba O. A. Levchenko G. N. Masanovets I. I. Seyfullina G. L. Kamalov 《Russian Journal of General Chemistry》2013,83(5):915-927
On the base of the kinetic and activation parameters of the hydrogen peroxide decomposition in the presence of chelates of CoX2 salts (X = Cl, Br, I, NCS) with N,N,N′,N′-tetrasubstituted thiocarbamoylsulfenamides containing exocyclic (out-of-chelate) fragments of dimethylamine (I), piperidine (II), and piperazine (III) the nature of acido-ligands influence on catalase activity of complexes I–III was revealed, depending on the structure and composition of the chelating ligand. Mononuclear complexes I(Br) and II(Br) can transform into 10-membered binuclear macrochelate intermediates. 相似文献
2.
Danuta Czakis-Sulikowska Joanna Radwańska-Doczekalska Bożena Kuźnik Anna Malinowska 《Transition Metal Chemistry》1995,20(2):203-207
Summary Complexes of empirical formulae [ML2Cl2(OH2)2], [CoL2Br2(OH2)2]L·4H2O, [NiL2Br2(OH2)2]L2·2H2O, [ML2(OH2)4]L2(NO3)2 and [ML4(OH2)2](ClO4)2·2H2O (M = CoII, NiII, L = 2,4-bipyridyl) were synthesized and characterized by elemental and spectral analyses. The thermal decomposition of the complexes was also investigated.Author to whom all correspondence should be directed. 相似文献
3.
Manuel A.V. Ribeiro da Silva Bernd Schröder Vasco B.M. Castro Luís M.N.B.F. Santos 《The Journal of chemical thermodynamics》2008,40(4):599-606
Two substituted N-acylthioureas and the respective Ni(II) and Cu(II) complexes were synthesized, namely: N,N-di-n-butyl-N′-thenoylthiourea (Hnbtu); N,N-di-iso-butyl-N′-thenoylthiourea (Hibtu); bis[N,N-di-n-butyl-N′-thenoylthioureato]nickel(II), [Ni(nbtu)2]; bis[N,N-di-n-butyl-N′-thenoylthioureato]copper(II), [Cu(nbtu)2]; bis[N,N-di-iso-butyl-N′-thenoylthioureato]nickel(II), [Ni(ibtu)2]; bis[N,N-di-iso-butyl-N′-thenoylthioureato]copper(II), [Cu(ibtu)2]. The standard (p° = 0.1 MPa) molar enthalpies of formation and sublimation of the two N-acylthioureas were measured, at T = 298.15 K, by rotating-bomb combustion calorimetry and Calvet microcalorimetry, respectively. The standard (p° = 0.1 MPa) molar enthalpies of formation of the Ni(II) and Cu(II) complexes were determined, at T = 298.15 K, by high precision solution–reaction calorimetry. From the results obtained, the enthalpies of hypothetical metal–ligand and metal–metal exchange reactions, in the gaseous phase, were derived, thus allowing a discussion of the gaseous phase energetic difference between the complexation of Ni(II) and Cu(II) to 1,3-ligand systems with (S,O) ligator atoms. 相似文献
4.
《Journal of Coordination Chemistry》2012,65(23):4144-4162
Reactions of anhydrous CoX2 (X?=?Br?, SCN?) and Ni(ClO4)2 with N,N,N′,N′-tetraisobutylpyridine-2,6-dithiocarboxamides (S-dbpt), N,N,N′,N′-tetraisopropyl pyridine-2,6-dithiocarboxamides (S-dppt), and N,N,N′,N′-tetraethylpyridine-2,6-dithiocarboxamides (S-dept) lead to the formation of [Co(S-dbpt)Br2] (1), [Co(S-dppt)(SCN)2] (2), and [Ni(S-dept)2]·(ClO4)2·H2O (3), respectively. The X-ray crystal structures of the three S-dapt ligands and three complexes along with spectroscopic analyzes are presented. The molecular structure investigations of the S-dapt ligands show that the thiamide planes are twisted with respect to the pyridine ring, which is more in the case of phenyl groups. The structures of the Co(II) complexes reveal that an increase in steric crowding on the amide side arms of the ligands has no substantial effect on the geometry adopted by the corresponding complexes. The Co(II) gives only 1?:?1 five-coordinate, ion-paired complexes with a distorted square pyramidal geometry. Ni(II), on the other hand, prefers an octahedral geometry with 1?:?2 metal–ligand ratio. The coordination behavior of S-dapt has been compared to the analogous oxo(O-daap) ligands. Lesser propensity of S atom to get involved in H-bonding interactions ensures an S-N-S type of tridentate coordination by S-dapt. 相似文献
5.
《Journal of Inorganic and Nuclear Chemistry》1981,43(12):3275-3276
The acid dissociation constants of N,N′-bis(2-hydroxyethyl) aminomethyl phosphonic acid (BHAMP) and the stability constants with Zn++ and Mn++ were determined at 25°C and at an ionic strength of 0.10 by means of potentiometric methods. The existence of a stable chelate species YM is illustrated. The equilibrium constants reported were calculated by the method developped by Schwartzenbach. 相似文献
6.
The thermal decomposition behaviour of polymeric complexes of Cu(II) and Hg(II) with N,N-bis(dithiocarboxy)piperazine is investigated in air by thermogravimetric (TG), derivative thermogravimetric (DTG) and differential thermal analysis (DTA) techniques. The kinetic parameters (non-isothermal method) for their decomposition have been evaluated by graphical as well as by least-squares methods. The equations of Coats-Redfern, Freeman-Carroll and Horowitz-Metzger have been applied. The results indicate that the values ofE,A and S obtained by these three different methods agree well. It was also found that the decomposition of these metal chelates follow first-order kinetics.
The authors are thankful to Prof. C. G. R. Nair, Head of the Department of Chemistry, University of Kerala and Dr. M. P. Kannan, Department of Chemistry, University of Calicut for some helpful discussions. 相似文献
Zusammenfassung Mittels TG, DTG und DTA wurde das thermische Zersetzungsverhalten von Polymerkomplexen aus Cu(II) bzw. Hg(II) mit N,N-Bis(dithiocarboxy)piperazin an Luft untersucht. Für ihre Zersetzung (nichtisotherme Methode) wurden die kinetischen Parameter sowohl graphisch als auch durch Methoden mit den kleinsten Fehlerquadraten ermittelt. Dabei wurden die Gleichungen von Coats-Redfern, Freeman-Carroll und von Horowitz-Metzger angewendet. Alle drei Verfahren zeigen übereinstimmende Resultate fürE, A undS. Es wurde weiterhin gefunden, daß diese Metallchelate einer Reaktion erster Ordnung unterliegen.
The authors are thankful to Prof. C. G. R. Nair, Head of the Department of Chemistry, University of Kerala and Dr. M. P. Kannan, Department of Chemistry, University of Calicut for some helpful discussions. 相似文献
7.
《Journal of Inorganic and Nuclear Chemistry》1976,28(3):443-445
The complexes of N,N′-didodecildithiooxamide (L): CoL3(ClO4)3, NiL2X2 (X = Cl, Br, I, ClO4, HSO4), CuL2X2 (X = ClO4, HSO4) and CuLX2 (X = Cl, Br) were prepared. The cobalt and nickel complexes are diamagnetic, with octahedral and planar coordination respectively. The copper complexes are paramagnetic with normal magnetic moments corresponding to a tetragonal coordination. The i.r. and far i.r. spectra are discussed. 相似文献
8.
A new 1,2-diamine ligand, N,N-bis(2-hydroxyethyl)stilbenediamine (L), has been prepared by reduction of the condensation product of benzaldehyde with 2-aminoethanol with Al amalgam. Mononuclear complexes of the [CuL(H2O)]X2 type where X=Cl– or AcO– with CuII and PdLCl2 with palladium(II) have been prepared and characterized by elemental analysis and i.r., u.v.–vis. or 1H-n.m.r. spectroscopy. 相似文献
9.
A new series of nickel(II) complexes derived from symmetrical diacetyl bisaroylhydrazones [Ni(L1-R)] and unsymmetric phenylglyoxal bisaroylhydrazones [Ni(L2-R)] have been prepared and characterized. X-ray crystal and molecular structures of [Ni(L1-H)], [Ni(L1-pCH3O)] and [Ni(L1-pNO2)] have been determined. In these complexes, the Ni(II) is in a distorted square planar environment and the aroylhydrazone acts as dinegative tetradentate ligand forming a 5,5,5-tricyclic chelate ring. Reaction of [Ni(L1-R)] with aqueous ammonia afforded the paramagnetic five coordinate [Ni(L1-R)(NH3)] while [Ni(L2-R)] gave the diamagnetic square planar [Ni(L2-R)(NH3)] complexes. Reaction of [Ni(L1-R)] complexes with imidazole gave the corresponding paramagnetic octahedral bis(imidazole) adducts. X-ray structures of both [Ni(L1-H)(HIm)2] and [Ni(L1-pNO2)(HIm)2] suggest a distorted octahedral structure where the bisaroylhydrazone occupies the basal plane while the two imidazoles occupy the axial sites. The molecular units are associated together forming triple stranded helical chains. With imidazole the [Ni(L2-R)] series gave the corresponding diamagnetic mono(imidazole) [Ni(L2-R)(HIm)] complexes, The X-ray structure of {Ni(L2-pCH3)(HIm)] suggest square planar arrangement around the Ni(II) where the bisaroylhydrazone acts as dinegative NNO tridentate ligand forming with the Ni(II) a 5,6-bicyclic chelate ring the fourth coordination site is occupied by imidazole nitrogen. 相似文献
10.
《Journal of Coordination Chemistry》2012,65(2):256-271
Reactions of M(NO3)2?·?xH2O [M?=?Co(II), Ni(II), and Cu(II)] with N,N,N′,N′-tetraalkylpyridine-2,6-dicarboxamides(O-daap) in CH3CN yield [Co(O-dmap)(NO3)2] (1), [Co(O-deap)(NO3)2] (2), [Co(O-dpap)(NO3)2] (3), [Ni(O-dmap)(H2O)3](NO3)2] (4), [Ni(O-deap)(H2O)2(NO3)](NO3)] (5), [Cu(O-deap)(NO3)2] (6), and [Cu(O-dpap)(NO3)2] (7). X-ray crystal structures of 1, 2, 4, 5, and 7 reveal that O-daap ligands coordinate tridentate to each metal, O–N–O, with nitrate playing a vital role in molecular and crystal structures of all the complexes. The coordination geometry in the two Co(II) complexes, 1 and 2, is approximately pentagonal bipyramidal with nitrate bonded in a slightly unsymmetrical bidentate chelating mode. [Ni(dmap)(H2O)3](NO3)2 (4) and [Ni(deap)(H2O)2(NO3)](NO3) (5) exhibit octahedral geometry, the former containing uncoordinated nitrate while the latter has one nitrate coordinated unidentate and the other nitrate outside the coordination sphere. The Cu(II) in [Cu(dpap)(NO3)2] (7) occupies a distorted square pyramidal geometry and is linked to two unidentate nitrates, although one nitrate is also involved in a weak interaction with the metal through its other oxygen. IR spectra and other physical studies are consistent with their crystal structural data. O-dmap?=?N,N,N′,N′-tetramethylpyridine-2,6-dicarboxamides; O-deap?=?N,N,N′,N′-tetraethylpyridine-2,6-dicarboxamides; and O-dpap?=?N,N,N′,N′-tetraisopropylpyridine-2,6-dicarboxamides. 相似文献
11.
Abstract Sodium 4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate (1) is synthesized by the sulfonation of 6-hydroxybiochanin A and its structure is characterized by elemental analysis, 1H-NMR, and IR spectroscopy. It is assembled with cobalt(II) or zinc(II), hexaquacobalt(II) bis(4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate)
tetrahydrate (2) and hexaquazinc(II) bis(4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate) tetrahydrate (3) are obtained and characterized by IR spectroscopy. Simultaneously, their three-dimensional structures are determined by
single-crystal X-ray analysis. It turns out that 2 and 3 are isomorphous and crystallize in the triclinic crystal system, space group P-1. Hydrophilic regions are defined by O–H···O hydrogen bonds involving the coordinated water molecules, the included water
molecules, and sulfonate groups. Aromatic π...π stacking interactions assemble the isoflavone skeletons into columns and these
columns formed hydrophobic regions. The sulfonate group is an important bridge as a structural link between the hydrophilic
regions and the hydrophobic regions. Hydrogen bonds, π...π stacking interactions and the electrostatic interactions assemble
2 and 3 into three-dimensional network structures.
Graphical abstract Sodium 4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate (1) is synthesized and assembled with cobalt(II) or zinc(II). Hexaquacobalt(II) bis(4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate)
tetrahydrate (2) and hexaquazinc(II) bis(4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate) tetrahydrate (3) are obtained and determined by single-crystal X-ray analysis. It turns out that 2 and 3 are isomorphous and assembled into three-dimensional network structures, characterized by hydrophilic regions defined by
hydrogen bonds involving the coordinated water molecules, the included water molecules, and the sulfonate groups and by hydrophobic
columns, formed by the isoflavone skeletons, interacting through π...π stacking interactions.
相似文献
12.
Summary MnII, NiII and CuII complexes of (1,3-bis-aminomethyl)-cyclohexane-N,N,N,N-tetrakisbenzimidazole (CDTB) have been prepared and characterized by spectral techniques. The complexes are monomeric and pseudo-octa-hedral, as evidenced by their e.p.r. spectra and analytical data. Parameters
2,
2,
2 and for CuII complexes, and the crystal field splitting parameter (10 Dq) together with the Nephelauxetic ratio (), for NiII complexes, are reported. 相似文献
13.
Six new -oxamido heterobinuclear complexes, namely [Cu(oxap)Fe(L)2]SO4, where oxap denotes the N,N-bis(2-aminopropyl)oxamido dianion and L represents 1,10-phenanthroline (phen); 5-nitro-1,10-phenanthroline (NO2-phen); 5-chloro-1,10-phenanthroline (Cl-phen); 5-methyl-1,10-phenanthroline (Me-phen); 2,2-bipyridine (bpy); and 4,4-dimethyl-2,2-bipyridine (Me2bpy), have been synthesized and characterized by elemental analyses, i.r. spectra, electronic spectra, magnetic moments (at room temperature) and molar conductivity measurements. The temperature dependent magnetic susceptibilities of [Cu(oxap)Fe(bpy)2]SO4 (1) and [Cu(oxap)Fe(phen)2]SO4 (2) have been studied in the 4.2–300K range, giving the exchange integrals J=–20.9cm–1 for (1) and J=–22.5cm–1 for (2). These results are commensurate with antiferromagnetic interactions between adjacent metal ions within each molecule. 相似文献
14.
《Journal of Coordination Chemistry》2012,65(3):515-523
Two new isostructural copper(II)–zinc(II) complexes, [CuZnLBr2] (1) and [CuZnLCl2] (2) (H2L = N,N′-bis(4-methoxysalicylidene)cyclohexane-1,2-diamine), have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Both complexes crystallize in the P-1 space group. The Cu in each complex is four-coordinate square planar with two imines and two phenolates of L. The Zn in each complex is four-coordinate tetrahedral with two phenolates of L and two halides (Br for 1 and Cl for 2). The superoxide dismutase (SOD) activity of the complexes indicates that both complexes are rudimentary models for SOD. 相似文献
15.
J. Radwańska-Doczekalska D. Czakis-Sulikowska M. Markiewicz 《Journal of Thermal Analysis and Calorimetry》1997,48(4):865-875
2,4-Bipyridyl (2,4-bipy orL) complexes with cobalt(II), nickel(II) and copper(II) of the formulae M(2,4-bipy)2(CH3COO)2·2H2O (M(II) = Co, Ni, Cu), Co(2,4-bipy)2SO4·3H2O or Ni(2,4-bipy)2SO4·4H2O have been prepared and their IR and electronic (VIS) spectra are discussed. The thermal behaviour of the obtained compounds has also been studied. The intermediate products of decomposition at different temperatures have been characterized by chemical analysis and X-ray diffraction.We thank dr. A. Malinowska for performing VIS spectra. This work was supported by the KBN project No. PB 0636/P3/93/04. 相似文献
16.
Summary New potential tetradentate ligands, N-benzoyl-N-thiobenzohydrazide (H2BTBH) and N-salicyl-N-thiobenzohydrazide (H2SBTH) have been prepared and characterized. Their complexes with CoII, NiII and ZnII have been prepared and characterized on the basis of elemental analyses, magnetic susceptibility measurements, and u.v.-vis., i.r. and 1H-n.m.r. spectral studies. The bonding and stereochemistries of the complexes are discussed. H2BTBH, H2SBTH and the complexes have been screened towards a number of bacteria. 相似文献
17.
Sun Hongwei Lin Huakuan Zhu Shourong Zhao Guanghua Su Xuncheng Chen Yunti 《Transition Metal Chemistry》1999,24(3):362-365
Two hexadentate compounds incorporating 1,10-phenanthroline and four alkylamino donors have been prepared. The protonation constants and the formation constants of dipositive ion (Mn2+, Co2+, Cu2+ and Zn2+) complexes have been determined in aqueous solution by pH titration at 25 ± 0.1 °C and I = 0.1 mol·dm–3 NaNO3. 相似文献
18.
19.
Talal A. K. Al-Allaf Ihsan A. Mustafa Sa'ad E. Al-Mukhtar 《Transition Metal Chemistry》1993,18(1):1-5
Summary A series of new PtII and PdII complexes of N,N-disubstituted thiourea derivatives of general formulae [MLCl2]2, [ML2Cl2] and [ML4]Cl2 have been prepared and characterised by physicochemical and spectroscopic methods. The reaction of these ligands with [M(DMSO)2Cl2], M = Pt, cis- or Pd, trans-, in CHCl3 and EtOH at ambient temperature or under reflux, is described. 相似文献
20.
《Journal of Coordination Chemistry》2012,65(24):4164-4179
AbstractUrease catalyzes the decomposition of urea into ammonia, which has harmful effects on both human health and fertile soil. Aiming at exploring novel urease inhibitors, a series of hydrazone compounds and their CoIII, CuII, NiII, and ZnII complexes were prepared from 4-methoxy-N'-(pyridin-2-ylmethylene)benzohydrazide (HL). They are [CoClL(NCS)] (1), [CoL2]·Cl·CH3OH·H2O (2), [CuL(NCNCN)]n·nCH3OH (3), [NiL(HL)]·ClO4·CH3OH (4) and [ZnClL(OH2)]·CH3OH (5). The compounds were characterized by physico-chemical methods. Structures of the complexes were further confirmed by single crystal X-ray diffraction. The metal ions in 1, 3, and 5 display square pyramidal coordination and 2 and 4 display octahedral coordination. The inhibitory effects of the compounds on Jack bean urease were evaluated. The results showed that 3 has effective urease inhibitory activity, with IC50 value of (7.3?±?1.0) μmol L?1. 相似文献