首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a search for environment-friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of N-bis[2-(1,2-dicarboxyethoxy)ethyl]aspartic acid (BCA6) with Fe(II), Co(II), and Ni(II) ions in aqueous 0.1 M NaCl solution were studied at 25°C by potentiometric titration. The model for complexation and the stability constants of different complexes were determined for each metal ion using SUPERQUAD. In all cases, complex formation was dominated by stable ML4? complexes.  相似文献   

2.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of [S,S,S]- and [R,S,R]-isomers of N-bis[2-(1,2-dicarboxyethoxy)ethyl] aspartic acid (BCA6) with Mg(II), Ca(II), Mn(II), Fe(III), Cu(II) and Zn(II) ions in aqueous 0.1 M NaCl solution were studied at 25°C by potentiometric titration. The model for complexation and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions (M n+), stable ML n?6 complexes dominated complex formation for both isomers. Differences in complexation models were found for binuclear species.  相似文献   

3.
Abstract

1-Hexadecyl-1,4,8,11-tetraazacyclotetradecane (hexadecyl cyclam) and 1-(3,7,11,15-tetramethyl) hexadecyl-1,4,8,11-tetraazacyclotetradecane (tetramethylhexadecyl cyclam) have been synthesized and their deprotonation and ligand-metal formation constants, K, determined for Cu(II), Zn(II) and Pb(II). The coupling of a long hydrocarbon chain to a ring nitrogen decreased the general ability of the cyclam ring to complex with metal ions. The greatest effect appeared to be for Cu(II) decreasing from a pK of 27 for cyclam to about 17. The titrations were fitted by HYPERQUAD and the concentrations of the intermediate complexes obtained as a function of pH. Metal-ligand complexes LMH2 4+, LMH2+ and LM2+ can coexist through a wide pH range. We have also calculated a composite metal-binding constant, K′, to reflect more accurately the overall ability of these ligands to bind a metal at any particular pH. K′, which is 14.6 for (hexadecyl cyclam)-Cu(II), is constructed from the concentrations of all the metal-chelated species at pH = 7. Generally, K′ is much lower than K.  相似文献   

4.
Complex formation of magnesium(II), manganese(II), nickel(II), copper(II) and lead(II) with S-carboxymethyl-L-cysteine in aqueous solution.The complex formation between Mg(II), Mn(II), Ni(II). Cu(II), Pb(II) ions and S-carboxy-methyl-l-cysteine (H2A) has been studied by measurement of pH at 25°C and constant ionic strength (1 M NaClO4). Although no interaction occurs with Mg(II), this work provides evidence for a variety of complexes: MnA; CuHA+; CuA; CuA22-; NiHA+; NiA; NiA22-; PbHA+; PbA et PbA(OH)-. The overall formation constants of all these species are computed and refined. The results allow the determination of the distribution of the complexes as a function of pH; some structural features of the metal complexes in solution are indicated.  相似文献   

5.
Abstract

Five coordination complexes with Mn2+ (1), Co2+ (2), Ni2+ (3), Cu2+ (4), and Zn2+ (5) containing acesulfame (ace) and N,N-diethylnicotinamide (dena) ligands were synthesized and structural binding properties investigated. Four compounds (1, 2, 4, and 5) were examined with single crystal X-ray diffraction methods. The structures containing Mn(II), Co(II), and Zn(II) were iso-structural. Six-coordination of metal cations were completed with two moles dena and four aqua ligands. The dena ligands were coordinated via pyridine nitrogen as neutral-monodentate. Charge stabilities of the complexes are complemented by two moles monoanionic ace ligands, located outside of the coordination unit. In the Cu(II) complex, the coordination is completed by acidic nitrogen and carbonyl oxygen atoms of two ace ligands and pyridine nitrogen of two moles dena ligands. The coordination to Cu(II) for ace ligands was monoanionic-bidentate. All metal cations in the structure are distorted octahedral. Thermal decomposition of complexes begins with removal of the aqua molecules from the structures and is completed by combustion of organic ligands. The final decomposition products of all structures have been identified as corresponding metal oxides. Some biological applications (anti-fungal/anti-bacterial) were studied using 15.  相似文献   

6.
Complex formation of the two tetraamine ligands (2S,3S)-1,2,3,4-tetraaminobutane (threo-tetraaminobutane, ttab) and (2R,3S)-1,2,3,4-tetraaminobutane (erythro-tetraaminobutane, etab) with Co(III), Ni(II), Cu(II), and Pd(II) was investigated in aqueous solution and in the solid state. For Ni(II) and Cu(II), the pH-dependent formation of a variety of species [Mn(II)xLyHz](2x+z)+ was established by potentiometric titrations and UV/Vis spectroscopy. In sufficiently acidic solutions the divalent cations formed a mononuclear complex with the doubly protonated ligand of composition [M(H2L)]4+. An example of such a complex was characterized in the crystal structure of [Pd(H2ttab)Cl2]Cl2.H2O. If the metal cation was present in excess, increase of pH resulted in the formation of dinuclear complexes [M2L]4+. Such a species was found in the crystal structure of [Cu2(ttab)Br4].H2O. Excess ligand, on the other hand, lead to the formation of a series of mononuclear bis-complexes [Mq(HxL)(HyL)](q+x+y)+. The crystal structure of [Co(Hetab)2][ZnCl4]2Cl. H2O with the inert, trivalent Co(III) center served as a model to illustrate the structural features of this class of complexes. By using an approximately equimolar ratio of the ligand and the metal cation, a variety of polymeric aggregates both in dilute aqueous solution and in the solid state were observed. The crystal structure of Cu2(ttab)3Br4, which exhibits a two-dimensional, infinite network, and that of [Ni8(ttab)12]Br16.17.5H2O, which contains discrete chiral [Ni8(ttab)12]16+ cubes with approximate T symmetry, are representative examples of such polymers. The energy of different diastereomeric forms of such complexes with the two tetraamine ligands were analyzed by means of molecular mechanics calculations, and the implications of these calculations for the different structures are discussed.  相似文献   

7.
The persistence of widely used chelating agents EDTA and DTPA in nature has been of concern and there is a need for ligands to replace them. In a search for environmentally friendly metal chelating ligands for industrial applications, complex formation equilibria of N-bis[2-(1,2-dicarboxyethoxy)ethyl]aspartic acid (BCA6) with Cd(II), Hg(II) and Pb(II) in aqueous 0.1 M NaNO3 solution were studied at 25°C by potentiometric titration. Complexation was modeled and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions, stable ML4? complexes dominated the complex formation. The stabilities of Cd(II), Hg(II) and Pb(II) chelates of BCA6 are remarkably lower than those of EDTA and DTPA. Environmental advantages of the use of BCA6 instead of EDTA and DTPA are better biodegradability and lower nitrogen content with a possibility to save chemicals and process steps in pulp bleaching.  相似文献   

8.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

9.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of N-tris[(1,2-dicarboxyethoxy)ethyl]amine (TCA6) with Ca(II), Mn(II), Cu(II) and Zn(II) ions in aqueous 0.1?M NaCl solution were studied at 25°C by potentiometric titration. A model for complexation and stability constants of the complexes were determined. With all of the metals, complex formation was dominated by ML4?. Comparison of TCA6 and six other chelating agents showed TCA6 to be suitable for applications where strong calcium binding is essential.  相似文献   

10.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

11.
The synthesis and characterisation of complexes of the hexaamine cage ligand facial-1,5,9,13,20-pentamethyl-3,7,11,15,18,22-hexaazabicyclo[7.7.7]tricosane (fac-(Me)(5)-D(3 h)tricosaneN(6)) with Zn(II), Cd(II) and Hg(II) is reported. Single crystal X-ray structural analyses of the Cd(II) and Hg(II) complexes reveal that the coordination spheres of both cations have an unusual trigonal prismatic stereochemistry organised by the ligand substituents and cavity size. This is unprecedented for hexaamine complexes of these metal ions, and in stark contrast to the distorted octahedral stereochemistry found previously for the analogous Zn(II) complex. An X-ray structural analysis of single crystals of the diprotonated ligand [fac-(Me)(5)-D(3h)tricosaneN(6) - 2H](CF(3)SO(3))(2) shows that it also prefers to adopt a trigonal prismatic structure. The (13)C NMR spectra of the metal complexes indicate that their structures are preserved at 20 degrees C in solution. However, heating the Zn(II) complex to approximately 130 degrees C appears to convert it to the trigonal prismatic form. In contrast cooling the trigonal prismatic Hg(II) complex to -80 degrees C does not convert it to the octahedral structure. The results are also compared to the structures of various other transition metal ion complexes of the same or similar ligands. This comparison yields overall an appreciation of the factors that determine the final structures of complexes formed with such tricosaneN(6) ligands.  相似文献   

12.
A general scheme is proposed for the electron impact fragmentation of the coordination compounds of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) with tetradentate chelating ligands based on S-substituted isothiosemicarbazides, salicylaldehyde, and 3-formylacetylacetone and also the corresponding free ligands. It was established that one of the main factors which determine the direction and degree of fragmentation of the complexes is the ability of the central metal atom to change its oxidation state. It was found that complex formation with the free ligands and exchange of the metal in the metal complexes take place as side processes on the walls of the ionization chamber of the mass spectrometer.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2248–2256, October, 1989.The authors are grateful to M. M. Timoshenko and Yu. V. Chizhov for assistance afforded during the recording of the photoelectron spectra.  相似文献   

13.
Zhou XP  Li D  Zheng SL  Zhang X  Wu T 《Inorganic chemistry》2006,45(18):7119-7125
The reactions of 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tpt) with copper(I) halides under solvothermal or traditional conditions yielded two polymeric Cu(I) complexes [Cu2I2(tpt)]n (1) and [Cu3I3(tpt)]n (2), one mixed-valence Cu(I)-Cu(II) complex [Cu4Cl2I4(tpt)2] (3), and two Cu(II) complexes [CuBr(bpca)] (4) and [CuI(bpca)] (5) (bpca = bis(2-pyridylcarbonyl)amine). Complex 1 is a zigzag chain with tpt in a bis-bipyridine-like coordination mode, whereas complex 2 with tpt chelating three Cu(I) cations is a ladderlike coordination polymer. Complex 3 is mixed-valence, with Cu(I) in a distorted tetrahedral geometry and Cu(II) in a distorted square pyramidal geometry, forming a ladderlike supramolecular chain. Complexes 4 and 5 are the products of in situ hydrolysis of tpt involving the oxidation of Cu(I). The synthesis and characterization of complex 1, 2, and 5 indicated that Cu(I) cannot promote the hydrolysis of tpt. The theoretical study shows that the main effect for hydrolysis of tpt is the electron-withdrawing effect of metal ions.  相似文献   

14.
The structure of hydrazinium magnesium(II) pyridazine-3,6-dicarboxylate comprises two univalent hydrogen hydrazine cations, a divalent di(aqua-O)bis(pyridazine-3,6-dicarboxylato-N,O) magnesium(II) anion and two solvate water molecules in the triclinic unit cell. The magnesium(II) ion is located on the center of symmetry. The coordination around the magnesium(II) ion is slightly distorted octahedral. The ligand molecules are coplanar. Their N,O bonding moieties coordinated to the metal ion form the equatorial plane of the distorted octahedron (Mg–O 2.062?Å, Mg–N 2.176?Å) with two water ligands in the trans axial sites (Mg–O 2.047?Å).  相似文献   

15.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5-5.0, 4.5, 4.0-5.0, 4.0, 5.0 and 5.0-7.0, respectively, and their desorptions by 2 mol L(-1) HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g(-1) of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL(-1). The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD < or = 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of approximately 3.0%.  相似文献   

16.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

17.
The coordination chemistry of a series of di- and tri-nucleating ligands with Ag(I), Hg(I) and Hg(II) has been investigated. Most of the ligands contain two or three N,N'-bidentate chelating pyrazolyl-pyridine units pendant from a central aromatic spacer; one contains three binding sites (2 + 3 + 2-dentate) in a linear sequence. A series of thirteen complexes has been structurally characterised displaying a wide range of structural types. Bis-bidentate bridging ligands react with Ag(I) to give complexes in which Ag(I) is four-coordinate from two bidentate donors, but the complexes can take the form of one-dimensional coordination polymers, or dinuclear complexes (mesocate or helicate). A tris-bidentate triangular ligand forms a complicated two-dimensional coordination network with Ag(I) in which Ag...Ag contacts, as well as metal-ligand coordination bonds, play a significant role. Three dinuclear Hg(I) complexes were isolated which contain an {Hg2}2+ metal-metal bonded core bound to a single bis-bidentate ligand which can span both metal ions. Also characterised were a series of Hg(II) complexes comprising a simple mononuclear four-coordinate Hg(II) complex, a tetrahedral Hg(II)4 cage which incorporates a counter-ion in its central cavity, a trinuclear double helicate, and a trinuclear catenated structure in which two long ligands have spontaneously formed interlocked metallomacrocyclic rings thanks to cyclometallation of two of the Hg(II) centres.  相似文献   

18.
The geometries and energetics of complexes of Hg(II) and Pb(II) with sulfur‐ and aminopyridine‐containing chelating resin including crosslinked polystyrene immobilizing 2‐aminopyridine via sulfur‐containing (PVBS‐AP), sulfoxide‐containing (PVBSO‐AP), and sulfone‐containing (PVBSO2‐AP) spacer arms have been investigated theoretically, and thus interactions of the metal ions with chelating resins were evaluated. The results indicate that PVBS‐AP behaves as a tridentate ligand to coordinate with the metal ions by S and two N atoms to form chelating compounds with S atom playing a dominant role in the coordination, whereas PVBSO‐AP and PVBSO2‐AP interact with metal cations, respectively, in a tricoordinate manner by O and two N atoms forming chelating complexes. Furthermore, it is revealed that O and N2 atoms of PVBSO‐AP are the main contributor of coordination to Hg(II), whereas N2 atom of PVBSO2‐AP is mainly responsible for the coordination to Hg(II). For PVBSO‐AP‐Pb2+ and PVBSO2‐AP‐Pb2+ complex, the coordination is dominated by the synergetic effect of N1, N2, and O atoms. Natural bond orbital and second‐order perturbation analyses suggest that the charge transfer from the chelating resins to metal ions is mainly dominated by the interactions of lone pair of electrons of the donor atoms with the unoccupied orbitals of metal ions. Hg(II) complexes exhibit larger binding energies than the corresponding Pb(II) complexes, implying the chelating resins exhibit higher affinity toward Hg(II), which is consistent with the experimental results. Combined the theoretical and experimental results, further understanding of the structural information of the complexes and the coordination mechanism was achieved. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Xing W  Ingman F 《Talanta》1982,29(8):707-711
The complexation reaction between Alizarin complexan ([3-N,N-di(carboxymethyl)aminomethyl]-1,2-dihydroxyanthraquinone; H(4)L) and zinc(II), nickel(II), lead(II), cobalt(II) and copper(II) has been studied by a spectrophotometric method. All these metal ions form 1:1 complexes with HL; 2:1 metal:ligand complex were found only for Pb(II) and Cu(II). The stability constants are (ionic strength I = 0.1, 20 degrees C): Zn(2+) + HL(3-) right harpoon over left harpoon ZnHL(-) log K +/- 3sigma(log K) = 12.19 +/- 0.09 (I = 0.5) Ni(2+) + HL(3-) right harpoon over left harpoon NiHL(-) log K +/- 3sigma(log K) = 12.23 +/- 0.21 Pb(2+) + HL(3-) right harpoon over left harpoon PbHL(-) log K +/- 3sigma(log K) = 11.69 +/- 0.06 PbHL(-) + Pb(2+) right harpoon over left harpoon Pb(2)L + H(+) log K approximately -0.8 Co(2+) + HL(3-) right harpoon over left harpoon CoHL(-) log K 3sigma(log K) = 12.25 + 0.13 Cu(2+) + HL(3-) right harpoon over left harpoon CuHL(-) log K 3sigma(log K) = 14.75 +/- 0.07 Cu(2+) + CuHL(-) right harpoon over left harpoon Cu(2)L + H(+) log K approximately 3.5 The solubility and stability of both the reagent and the complexes and the closenes of the values of the stability constants make this reagent suitable for the photometric detection of several metal ions in the eluate from an ion-exchange column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号