首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Cr(NH(3))(5)(py)(3+) ion has been obtained by metathesis of Cr(NH(3))(5)(Me(2)SO)(3+) in pyridine, isolated as the perchlorate salt, and characterized by absorption (lambda(max) at 467, 352, and 260 nm) and emission spectra (lambda(max) at 668 nm, tau = 2.0 &mgr;s at 20 degrees C in water) and by the py aquation rate (k = 5 x 10(-)(4) s(-)(1) at 80 degrees C). Ligand-field (LF) band irradiation in acid aqueous solution (10(-)(2) M HClO(4)) induces photoaquation of py (Phi = 0.26) and NH(3) (Phi = 0.16). HPLC indicates that the latter reaction gives rise to both cis- and trans-Cr(NH(3))(4)(py)(H(2)O)(3+), with the predominance of the cis isomer. This is the first Cr(NH(3))(5)X(z+)() species where Phi(x) > Phi(NH)3: the result is compared with the predictions of various photolysis models and is taken as chemical evidence for pi-acceptance by the py ligand. The photostereochemistry is also discussed. The phosphorescence is totally quenched by Cr(C(2)O(4))(3)(3)(-) (k(q) = 2.7 x 10(9) M(-)(1) s(-)(1)), while the photoreactions are only in part. On 470-nm excitation, the Phi(py)/Phi(NH)()3 ratio is approximately 1 and approximately 2 for the unquenchable and the quenchable contributions, respectively. Such a difference, suggesting at least two reactive precursors, can be interpreted in terms of the photochemistry proceeding from either the lowest doublet and quartet excited states or, alternatively, from the (4)E and (4)B(2) states. Irradiation of the very distinct absorption of coordinated pyridine results in both doublet-state emission and loss of py and NH(3). Comparison of this photobehavior with the LF results gives an efficiency of 0.7 for conversion of the py-localized pipi states into the Cr-localized LF states, confirmed by the wavelength dependence of the relative emission yields. Some py release (Phi = 0.03) is concluded to originate in the pipi states.  相似文献   

2.
Two new Ru complexes containing the 1,10-phenanthroline (phen) and 1,4,7-trithiacyclononane ([9]aneS3, SCH2CH2SCH2CH2SCH2CH2) ligands of general formula [Ru(phen)(L)([9]aneS3)]2+ (L = MeCN, 3; L = pyridine (py), 4) have been prepared and thoroughly characterized. Structural characterization in the solid state has been performed by means of X-ray diffraction analyses, which show a distorted octahedral environment for a diamagnetic d6 Ru(II), as expected. 1H NMR spectroscopy provides evidence that the same structural arrangement is maintained in solution. Further spectroscopic characterization has been carried out by UV-vis spectroscopy where the higher acceptor capability of MeCN versus the py ligand is manifested in a 9-15-nm blue shift in its MLCT bands. The E1/2 redox potential of the Ru(III)/Ru(II) couple for 3 is anodically shifted with respect to its Ru-py analogue, 4, by 60 mV, which is also in agreement with a higher electron-withdrawing capacity of the former. The mechanism for the reaction Ru-py + MeCN--> Ru-MeCN + py has also been investigated at different temperatures with and without irradiation. In the absence of irradiation at 326 K, the thermal process gives kinetic constants of k2 = 1.4 x 10(-5) s(-1) (DeltaH(++) = 108 +/- 3 kJ mol(-1), DeltaS(++) = -8 +/- 9 J K(-1) mol(-1)) and k-2 = 2.9 x 10(-6) s(-1) (DeltaH(++) = 121 +/- 1 kJ mol(-1), DeltaS(++) = 18 +/- 3 J K(-1) mol(-1)). The phototriggered process is faster and consists of preequilibrium formation of an intermediate that thermally decays to the final Ru-MeCN complex with an apparent rate constant of (k1Khnu)app = 1.8 x 10(-4) s(-1) at 304 K, under the continuous irradiation experimental conditions used.  相似文献   

3.
Conventional and stopped-flow spectrophotometry was used to to study the kinetics of ligand substitution in a number of bis(N-alkylsalicylaldiminato)oxovanadium(IV) complexes (=VO(R-X-sal)(2)) by 1,1,1- trifluoropentane-2,4-dione (=Htfpd) in acetone, according to the following reaction: VO(R-X-sal)(2) + 2Htfpd --> VO(tfpd)(2) + 2R-X-salH. The acronym R-X-salH refers to N-alkylsalicylaldimines with substituents X = H, Cl, Br, CH(3), and NO(2) in the 5-position of the salicylaldehyde ring and N-alkyl groups R = n-propyl, isopropyl, phenyl, and neopentyl. Under excess conditions ([Htfpd](0) > [VO(R-X-sal)(2)](0)), substitution by Htfpd occurs in two observable steps, as characterized by pseudo-first-order rate constants k(obsd(1)) and k(obsd(2)). Both rate constants increase linearly with [Htfpd](0) according to k(obsd(1)) = k(s(1)) + k(1)[Htfpd](0) and k(obsd(2)) = k(s(2)) + k(2)[Htfpd](0), with k(s(1)) and k(s(2)) describing small contributions of solvent-initiated pathways. Depending on the nature of R and X, second-order rate constants k(1) and k(2) lie in the range 0.098-0.87 M(-1) s(-1) (k(1)) and 0.022-0.41 M(-1) s(-1) (k(2)) at 298 K. For ligand substitution in the system VO(n-propyl-sal)(2)/Htfpd, the activation parameters DeltaH++ = 35.8 +/- 2.8 kJ mol(-1) and DeltaS++ = -146 +/- 23 J K(-1) mol(-1) (k(1)) and DeltaH++ = 40.2 +/- 1.3 kJ mol(-1) and DeltaS++ = -142 +/- 11 J K(-1) mol(-1) (k(2)) were obtained. The Lewis acidity of the complexes VO(n-propyl-X-sal)(2) with X = H, Cl, Br, CH(3), and NO(2) was quantified spectrophotometrically by determination of equilibrium constant K(py), describing the formation of the adduct VO(n-propyl-X-sal)(2).pyridine. The adduct VO(tfpd)(2).n-propyl-salH, formed as product in the system VO(n-propyl-sal)(2)/Htfpd, was characterized by its dissociation constant, K(D) = (3.30 +/- 0.10) x 10(-3) M. The mechanism suggested for the two-step substitution process is based on initial formation of the adducts VO(R-X-sal)(2).Htfpd (step 1) and VO(R-X-sal)(tfpd).Htfpd (step 2).  相似文献   

4.
Emission, excitation spectra, quantum yields, and emission lifetimes are reported for the mixed-ligand, bis(2.2'-bipyridine)ruthenium(II) complexes, cis-[Ru(bpy)(2)(PPh(3))X](n+) with X = Cl(-), Br(-), CN(-), and NO(2)(-) (n = 1) and pyridine (py), 4-aminopyridine (NH(2)py), 4,4'- bipyridine (4,4'-bpy), NH(3), and MeCN (n = 2) in EtOH-MeOH, 4:1 (v:v), at 77 K. Radiative, k(r), and nonradiative, k(nr), decay rate constants were determined for the series of complexes, and a linear dependence of ln k(nr) on E(00), with E(00) being the 0-0 energy gap determined by emission spectral fitting, was obtained with a slope of -(0.6 ± 0.1) × 10(-3). On the basis of emission quantum yields and apparent k(r) values, possible metal-to-ligand charge-transfer (MLCT) deactivation by direct population of excited (1)dd states from initially excited (1)MLCT states is discussed.  相似文献   

5.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

6.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

7.
We report the development of a series of rhenium(I) polypyridine complexes appended with an electron‐rich diaminoaromatic moiety as phosphorogenic sensors for nitric oxide (NO). The diamine complexes [Re(N^N)(CO)3(py‐DA)][PF6] (py‐DA=3‐(N‐(2‐amino‐5‐methoxyphenyl)aminomethyl)pyridine; N^N=1,10‐phenanthroline (phen) ( 1 a ), 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (Me4‐phen) ( 2 a ), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2‐phen) ( 3 a )) have been synthesized and characterized. In contrast to common rhenium(I) diimines, these diamine complexes were very weakly emissive due to quenching of the triplet metal‐to‐ligand charge‐transfer (3MLCT) emission by the diaminoaromatic moiety through photoinduced electron transfer (PET). Upon treatment with NO, the complexes were converted into the triazole derivatives [Re(N^N)(CO)3(py‐triazole)][PF6] (py‐triazole=3‐((6‐methoxybenzotriazol‐1‐yl)methyl)pyridine; N^N=phen ( 1 b ), Me4‐phen ( 2 b ), Ph2‐phen ( 3 b )), resulting in significant emission enhancement (I/I0≈60). The diamine complexes exhibited high reaction selectivity to NO, and their emission intensity was found to be independent on pH. Also, these complexes were effectively internalized by HeLa cells and RAW264.7 macrophages with negligible cytotoxicity. Additionally, the use of complex 3 a as an intracellular phosphorogenic sensor for NO has been demonstrated.  相似文献   

8.
The electrochemical oxidation of anodic nickel in acetonitrile solution containing both (a) a Schiff base HL derived from H-pyrrole-2-carbaldehyde and a substituted aniline, and (b) a nitrogen ligand (1, 10-phenanthroline (phen), 2,2′-bipyridine (bipy) or pyridine (py)) yielded the mixed complexes NiL2 · phen, NiL2 · bipy and NiL2 · (py)2. The crystal structure of 2,2′-bipyridine bis{2-[(phenyl)iminomethyl]pyrrolato}nickel(II) was determined by X ray diffraction. Crystals are triclinic space group P1 , with four molecules in the unit cell of dimensions a = 12.316(1), b = 13.169(4), c = 17.251(3) Å, α = 82.67(3)°, β = 83.66(1)° and γ = 87.34(2)°, and consist of monomeric molecules in which the central NiN6 unit has a distorted octahedral geometry.  相似文献   

9.
The reactivity of the tetraphenylborate salts of the rare earth metallocene cations [(C(5)Me(5))(2)Ln][(μ-Ph)(2)BPh(2)] (Ln = Y, 1; Sm, 2) has been investigated with substrates that undergo reduction with f element complexes to probe metal-substrate interactions prior to reduction. Results with NaN(3), 1-adamantyl azide, acetone, benzophenone, phenanthroline, pyridine, azobenzene, and phenazine are described. Not only were coordination complexes isolated, but substrate reduction by (BPh(4))(-) was also observed. Complex 1 reacts with NaN(3) to form the azide [(C(5)Me(5))(2)YN(3)](x), 3, which crystallizes as [(C(5)Me(5))(2)Y(μ-N(3))](3), 4, when obtained from 1 and 1-adamantyl azide. The samarium analogue [(C(5)Me(5))(2)SmN(3)](x), 5, can be produced similarly from 2 and NaN(3) and crystallized from MeCN as [(C(5)Me(5))(2)Sm(NCMe)(μ-N(3))](3), 6, and {[(C(5)Me(5))(2)Sm(μ-N(3))][(C(5)Me(5))(2)Sm(NCMe)(μ-N(3))]}(n), 7. Complexes 1 and 2 react with stoichiometric amounts of acetone and benzophenone to form the ketone adducts [(C(5)Me(5))(2)Ln(OCMe(2))(2)][BPh(4)] (Ln = Y, 8; Sm, 9) and [(C(5)Me(5))(2)Ln(OCPh(2))(2)][BPh(4)] (Ln = Y, 10; Sm, 11), respectively. Phenanthroline (phen) coordinates to 1 to form [(C(5)Me(5))(2)Y(phen)][BPh(4)], 12. Complexes 1 and 2 react with pyridine (py) to form [(C(5)Me(5))(2)Ln(py)(2)][BPh(4)], (Ln = Y, 13; Sm, 14). Complexes 3, 8, 10, and 12 can also be made from the solvated cation [(C(5)Me(5))(2)Y(THF)(2)][BPh(4)]. The reaction of 1 with PhNNPh yields the diamagnetic adduct [(C(5)Me(5))(2)Y(PhNNPh)][BPh(4)], 15, which transforms in benzene to the radical anion complex (C(5)Me(5))(2)Y(PhNNPh), 16, via a one electron reduction by (BPh(4))(-). Complex 1 similarly reacts with phenazine (phz) to produce the first rare earth phenazine radical anion complex {[(C(5)Me(5))(2)Y](2)(phz)}{BPh(4)}, 17. Further reduction of phenazine by (BPh(4))(-) in 17 yields [(C(5)Me(5))(2)Y](2)(phz), 18, which contains the common (phz)(2-) dianion. The reduction of fluorenone by (BPh(4))(-) is also reported.  相似文献   

10.
The emission properties, including luminescence lifetimes, of the lanthanide complexes Ln(Tf(2)N)(3) (Tf(2)N = bis(trifluoromethanesulfonyl)amide); Ln(3+) = Eu(3+), Tm(3+), Dy(3+), Sm(3+), Pr(3+), Nd(3+), Er(3+)) in the ionic liquid bmpyr Tf(2)N (bmpyr = 1-n-butyl-1-methylpyrrolidinium) are presented. The luminescence quantum efficiencies, η, and radiative lifetimes, τ(R), are determined for Eu(3+)((5)D(0)), Tm(3+)((1)D(2)), Dy(3+)((4)F(9/2)), Sm(3+)((4)G(5/2)), and Pr(3+)((3)P(0)) emission. The luminescence lifetimes in these systems are remarkably long compared to values typically reported for Ln(3+) complexes in solution, reflecting weak vibrational quenching. The 1.5 μm emission corresponding to the Er(3+) ((4)I(13/2)→(4)I(15/2)) transition, for example, exhibits a lifetime of 77 μs. The multiphonon relaxation rate constants are determined for 10 different Ln(3+) emitting states, and the trend in multiphonon relaxation is analyzed in terms of the energy gap law. The energy gap law does describe the general trend in multiphonon relaxation, but deviations from the trend are much larger than those normally observed for crystal systems. The parameters determined from the energy gap law analysis are consistent with those reported for crystalline hosts. Because Ln(3+) emission is known to be particularly sensitive to quenching by water in bmpyr Tf(2)N, the binding properties of water to Eu(3+) in solutions of Eu(Tf(2)N)(3) in bmpyr Tf(2)N have been quantified. It is observed that water introduced into these systems binds quantitatively to Ln(3+). It is demonstrated that Eu(Tf(2)N)(3) can be used as a reasonable internal standard, both for monitoring the dryness of the solutions and for estimating the quantum efficiencies and radiative lifetimes for visible-emitting [Ln(Tf(2)N)(x)](3-x) complexes in bmpyr Tf(2)N.  相似文献   

11.
Luminescence properties and their photoinduced control of the electric dipole transitions of a Eu(III) complex that has photochromic triangle terarylenes ligands, tris(hexafluoroacetylacetonato)bis[4,5-bis(5-methyl-2-phenylthiazol-4-yl)-2-phenylthiazole]europium(III) (Eu(hfa)3(THIA)2), were studied. Fairly high photochromic reactivity of the ligand between the open-ring and closed-ring forms were found to be maintained even in the complex, and reversible color change could be observed many times. The photocyclization and the cycloreversion quantum yields of the Eu(hfa)3(THIA)2 were found to be 37% and 3.4%, respectively. The thermal stability of the closed-ring form of THIA ligand is significantly improved in the Eu(III) complex. The (5)D0-(7)F2 transition intensity of the Eu(III) complex with open-ring form ligands (Eu(hfa)3(THIA)2-O) is larger than that of the Eu(III) complex with closed-ring form ligands (Eu(hfa)3(THIA)2-C). The radiative rate constants of Eu(hfa)3(THIA)2-O and Eu(hfa)3(THIA)2-C are estimated to be 1.7 x 10(2) and 1.5 x 10(2) s(-1), respectively. The reversible control of the emission properties of the Eu(III) complex by the photochromic reactions is demonstrated for the first time.  相似文献   

12.
Osmium tetroxide is reduced by molecular hydrogen in the presence of ligands in both polar and nonpolar solvents. In CHCl3 containing pyridine (py) or 1,10-phenanthroline (phen), OsO4 is reduced by H2 to the known Os(VI) dimers L2Os(O)2(mu-O)2Os(O)2L2 (L2 = py2, phen). However, in the absence of ligands in CHCl3 and other nonpolar solvents, OsO4 is unreactive toward H2 over a week at ambient temperatures. In basic aqueous media, H2 reduces OsO4(OH)n(n-) (n = 0, 1, 2) to the isolable Os(VI) complex, OsO2(OH)4(2-), at rates close to that found in py/CHCl3. Depending on the pH, the aqueous reactions are exergonic by deltaG = -20 to -27 kcal mol(-1), based on electrochemical data. The second-order rate constants for the aqueous reactions are larger as the number of coordinated hydroxide ligands increases, k(OsO4) = 1.6(2) x 10(-2) M(-1) s(-1) < k(OsO4(OH)-) = 3.8(4) x 10(-2) M(-1) s(-1) < k(OsO4(OH)2(2-)) = 3.8(4) x 10(-1) M(-1) s(-1). The observation of primary deuterium kinetic isotope effects, k(H2)/k(D2) = 3.1(3) for OsO4 and 3.6(4) for OsO4(OH)-, indicates that the rate-determining step in each case involves H-H bond cleavage. Density functional calculations and thermochemical arguments favor a concerted [3+2] addition of H2 across two oxo groups of OsO4(L)n and argue against H* or H- abstraction from H2 or [2+2] addition of H2 across one Os=O bond. The [3+2] mechanism is analogous to that of alkene addition to OsO4(L)n to form diolates, for which acceleration by added ligands has been extensively documented. The observation that ligands also accelerate H2 addition to OsO4(L)n highlights the analogy between these two reactions.  相似文献   

13.
Hung M  Stanbury DM 《Inorganic chemistry》2005,44(26):9952-9960
The aqueous oxidation of thioglycolic acid (TGA) by [Os(phen)(3)](3+) (phen = 1,10-phenanthroline) is catalyzed by traces of ubiquitous Cu(2+) and inhibited by the product [Os(phen)(3)](2+). In the presence of dipicolinic acid (dipic), which thoroughly masks trace Cu(2+) catalysis, and spin trap PBN, the kinetics under anaerobic conditions have been studied in the pH range 1.82-7.32. The rate law is -d[Os(phen)(3)(3+)]/dt = k[TGA](tot)[Os(phen)(3)(3+)], with k = 2{(k(b)K(a1) + k(c)K(a1)K(i))[H(+)] + k(d)K(a1)K(a2)}/{[H(+)](2) + K(a1)[H(+)] + K(a1)K(a2)}; K(a1) and K(a2) are the successive acid dissociation constants of TGA, and K(i) is the tautomerization constant of two TGA monoanions. k(b) + k(c)K(i) = (5.9 +/- 0.3) x 10(3) M(-)(1) s(-)(1), k(d) = (1.6 +/- 0.1) x 10(9) M(-)(1) s(-)(1) at mu = 0.1 M (NaCF(3)SO(3)) and 25 degrees C. The major products in the absence of spin traps are dithiodiglycolic acid, [Os(phen)(3)](2+), and [Os(phen)(2)(phen-tga)](2+), where phen-tga is phenanthroline with a TGA substituent. A mechanism is proposed in which neutral TGA is unreactive, the (minor) thiolate form of the TGA monoanion undergoes one-electron oxidation by [Os(phen)(3)](3+) (k(c)), and the dianion of TGA likewise undergoes one-electron oxidation by [Os(phen)(3)](3+) (k(d)). The Marcus cross relationship provides a good account for the magnitude of k(d) in this and related reactions of TGA. [Os(phen)(2)(phen-tga)](2+) is suggested to arise from a post-rate-limiting step involving attack of the TGA(*) radical on [Os(phen)(3)](3+).  相似文献   

14.
Flash photolysis of nitrosyl tris(aryl)corrolate complexes of iron(III), Fe(Ar(3)C)(NO) (Ar(3)C(3-) = 5,10,15-tris(4-nitro-phenyl)corrolate (TNPC(3-)), 5,10,15-tris(phenyl)corrolate (TPC(3-)) or 5,10,15-tris(4-tolyl)corrolate (H(3)TTC(3-))) leads to NO labilization. This is followed by the rapid reaction of NO with Fe(III)(C) to regenerate the starting complex. The second-order rate constants for the back reactions (k(NO)) were determined to be many orders of magnitude faster than the corresponding reactions of ferric porphyrin complexes and indeed are reminiscent of the very large values seen for those of the corresponding ferrous porphyrin analogues. These data are interpreted in terms of the strongly electron-donating character of the trianionic corrolate ligand and the likely triplet electronic configuration of the iron(III) complex. These reduce the affinity of the metal centers to Lewis bases to the extent that axial ligands bind very weakly or not at all. This property is illustrated by the nearly identical k(NO) values ( approximately 10(9) M(-1) s(-1) at 295 K) recorded for the back reaction of Fe(III)(TNPC) with NO after flash photolysis of Fe(TNPC)(NO) in toluene solution and in THF solution. Softer Lewis bases have a somewhat greater effect; for example, studies in 1:9 (v:v) acetonitrile:toluene and 1:9 pyridine:toluene gave k(NO) values decreased approximately 33% and approximately 85%, respectively, but these both remain >10(8) M(-1) s(-1). The potential roles of Lewis bases in controlling the dynamics of NO addition to Fe(TNPC) in toluene was investigated in greater detail by determining the rates as a function of pyridine concentration over a wide range (10(-4) to 2.5 M). These data suggest that, while a monopyridine complex, presumably Fe(TNPC)(py), is readily formed (K approximately 10(4) M), this species is about one-sixth as reactive as Fe(TNPC) itself. It appears that a much less reactive bis(pyridine) complex also is formed at high [py] but the equilibrium constant is quite small (<1 M(-1)).  相似文献   

15.
Lanthanide metals react with PhTeTePh and elemental Te in pyridine to give (py)(y)Ln(4)(Te)(TeTe)(2)(TeTeTe(Ph)TeTe)(Te(x)TePh) (Ln = Sm (y = 9; x = 0); Tb, Ho (y = 8, x = 0.1)), and (py)(7)Tm(4)(Te)[(TeTe)(4)TePh](Te(0.6)TePh) clusters. The Sm, Tb, and Ho compounds contain a square array of Ln(III) ions all connected to a central Te(2-) ligand. Two adjacent edges of the square are bridged by ditelluride ligands, with the Ln ion that is eta(2) bound to both of these TeTe ligands also coordinating to a terminal TePh ligand. The other two edges of the square are spanned by ditellurides that both coordinate a TePh ligand that has been displaced from the Ln ion by pyridine, to give the pentaanion (mu-eta(2)-eta(2)-Te(2)Te(Ph)Te(2)).(5-) In the Tm compound, the displaced TePh interacts with all four TeTe units. The compounds are air-, light-, and temperature-sensitive. Upon thermolysis, they decompose to give solid-state TbTe(2-x), HoTe, or TmTe, with elimination of Te and TePh(2).  相似文献   

16.
Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, (3)IL(cis-L), (3)MLCT(Re→Me(4)phen), and (3)IL(Me(4)phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (ΔE(a)) for interconversion between (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) emitting states were determined. For L = cis-stpy, ΔE(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, ΔE(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(Me(4)phen) state to (3)MLCT(Re→Me(4)phen), k(i) ? 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes.  相似文献   

17.
The new complex trans-[NCRu(py)(4)(CN)Ru(py)(4)NO](PF(6))(3) (I) was synthesized. In acetonitrile solution, I shows an intense visible band (555 nm, epsilon = 5800 M(-1) cm(-1)) and other absorptions below 350 nm, associated with d(pi) --> pi(py) and pi(py) --> pi(py) transitions. The visible band is presently assigned as a donor-acceptor charge transfer (DACT) transition from the remote Ru(II) to the delocalized [Ru(II)-NO(+)] moiety. Photoinduced release of NO is observed upon irradiation at the DACT band. Application of the Hush model reveals strong electronic coupling, with H(DA) = approximately 2000 cm(-1). The difference between the optical absorption energy and redox potentials for the donor and acceptor sites (Ru(III,II), 1.40 V, and NO(+)/NO, 0.50 V, vs Ag/AgCl, 3 M KCl, respectively) (hnu - DeltaE(red)) is 1.33 eV, a large value which probably relates to the significant changes in distances and angles for the Ru-N-O moiety upon reduction. UV-vis absorptions, IR frequencies, and redox potentials are solvent-dependent. Controlled potential reduction (of NO(+)) and oxidation (of Ru(II) associated with the dicyano-chromophore) of I afford stable species, [NCRu(II)(py)(4)(CN)Ru(py)(4)NO](2+) (I(red)) and [NCRu(III)(py)(4)(CN)Ru(py)(4)NO](4+) (I(ox)), respectively, which are characterized by UV-vis and IR spectroscopies. I(red) shows an EPR spectrum characteristic of [Ru(II)-NO(*)] complexes. Compound I is electrophilically reactive in aqueous solution above pH 5: values of the equilibrium constant for the reaction [NCRu(py)(4)(CN)Ru(py)(4)NO](3+)+ 2 OH(-) <--> [NCRu(py)(4)(CN)Ru(py)(4)NO(2)](+) + H(2)O, K = 3.2 +/- 1.4 x 10(15) M(-2), and of the rate constant for the nucleophilic addition of OH(-), k = 9.2 +/- 0.2 x 10(3) M(-1) s(-1)(25 degrees C, I = 1 M), are obtained, with DeltaH = 90.7 +/- 3.8 kJ mol(-1) and DeltaS = 135 +/- 13 J K(-1) mol(-1). The oxidized complex, I(ox), shows an enhanced electrophilic reactivity toward OH(-). This addition reaction is followed by irreversible processes, which most probably lead to disproportionation of bound nitrite and other products.  相似文献   

18.
A new 2-(9-anthrylmethylamino)ethyl-appended cyclen, L(3) (1-(2-(9-anthrylmethylamino)ethyl)-1,4,7,10-tetraazacyclododecane) (cyclen = 1,4,7,10-tetraazacyclododecane), was synthesized and characterized for a new Zn(2+) chelation-enhanced fluorophore, in comparison with previously reported 9-anthrylmethylcyclen L(1) (1-(9-anthrylmethyl)-1,4,7,10-tetraazacyclododecane) and dansylamide cyclen L(2). L(3) showed protonation constants log K(a)(i)() of 10.57 +/- 0.02, 9.10 +/- 0.02, 7.15 +/- 0.02, <2, and <2. The log K(a3) value of 7.15 was assigned to the pendant 2-(9-anthrylmethylamino)ethyl on the basis of the pH-dependent (1)H NMR and fluorescence spectroscopic measurements. The potentiometric pH titration study indicated extremely stable 1:1 Zn(2+)-L(3) complexation with a stability constant log K(s)(ZnL(3)) (where K(s)(ZnL(3)) = [ZnL(3)]/[Zn(2+)][L(3)] (M(-)(1))) of 17.6 at 25 degrees C with I = 0.1 (NaNO(3)), which is translated into the much smaller apparent dissociation constant K(d) (=[Zn(2+)](free)[L(3)](free)/[ZnL(3)]) of 2 x 10(-)(11) M with respect to 5 x 10(-)(8) M for L(1) at pH 7.4. The quantum yield (Phi = 0.14) in the fluorescent emission of L(3) increased to Phi = 0.44 upon complexation with zinc(II) ion at pH 7.4 (excitation at 368 nm). The fluorescence of 5 microM L(3) at pH 7.4 linearly increased with a 0.1-5 microM concentration of zinc(II). By comparison, the fluorescent emission of the free ligand L(1) decreased upon binding to Zn(2+) (from Phi = 0.27 to Phi = 0.19) at pH 7.4 (excitation at 368 nm). The Zn(2+) complexation with L(3) occurred more rapidly (the second-order rate constant k(2) is 4.6 x 10(2) M(-)(1) s(-)(1)) at pH 7.4 than that with L(1) (k(2) = 5.6 x 10 M(-)(1) s(-)(1)) and L(2) (k(2) = 1.4 x 10(2) M(-)(1) s(-)(1)). With an additionally inserted ethylamine in the pendant group, the macrocyclic ligand L(3) is a more effective and practical zinc(II) fluorophore than L(1).  相似文献   

19.
The complex [Mn(dbm)(2)(py)(2)](ClO(4)) (dbm = anion of 1,3-diphenyl-1,3-propanedione (dibenzoylmethane), py = pyridine) was synthesized and characterized by X-ray crystallography. It has tetragonally distorted geometry with the axial positions occupied by the py ligands and the equatorial positions by the dbm ligands. This mononuclear complex of high-spin Mn(III) (3d(4), S = 2) was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) both as a solid powder and in frozen dichloromethane solution. Very high quality HFEPR spectra were recorded over a wide range of frequencies. The complete dataset of resonant magnetic fields versus transition energies was analyzed using automated fitting software. This analysis yielded the following spin Hamiltonian parameters (energies in cm(-1)): D = -4.504(2), E = -0.425(1), B(4)(0) = -1.8(4) x 10(-4), B(4)(2) = 7(3) x 10(-4), B(4)(4) = 48(4) x 10(-4), g(x) = 1.993(1), g(y) = 1.994(1), and g(z) = 1.983(1), where the B(4)(n) values represent fourth-order zero-field splitting terms that are generally very difficult to extract, even from single-crystal measurements. The results here demonstrate the applicability of HFEPR at high-precision measurements, even for powder samples. The zero-field splitting parameters determined here for [Mn(dbm)(2)(py)(2)](+) are placed into the context of those determined for other mononuclear complexes of Mn(III).  相似文献   

20.
Chen MH  Lee S  Liu S  Yeh A 《Inorganic chemistry》1996,35(9):2627-2629
Reactions of Fe(CN)(5)L(3-) (L = 4-aminopyridine (4-ampy), pyridine (py), 4,4'-bipyridine (4,4'-bpy), and pyrazine (pz)) with peroxydisulfate, Fe(CN)(5)L(3-) + S(2)O(8)(2-) right harpoon over left harpoon Fe(CN)(5)L(2-) + SO(4)(-) + SO(4)(2-), have been found to follow an outer-sphere electron transfer mechanism. The specific rate constants of oxidation are 1.45 +/- 0.01, (9.00 +/- 0.02) x 10(-2), (5.60 +/- 0.01) x 10(-2), and (2.89 +/- 0.01) x 10(-2) M(-1) s(-1), for L = 4-ampy, py, 4,4'-bpy, and pz, respectively, at &mgr; = 0.50 M LiClO(4), T = 25 degrees C, pH = 4.4-8.8. The rate constants of oxidation for the corresponding Ru(NH(3))(5)L(2+) complexes were also measured and were found to be faster than those of Fe(CN)(5)L(3-) complexes by a factor of approximately 10(2) even after the corrections for the differences in reduction potentials and in the charges of the complexes. The difference in reactivity may arise from the hydrogen bonding between peroxydisulfate and the ammonia ligands of Ru(NH(3))(5)L(2+) and nonadiabaticity observed in the Fe(CN)(5)L(3-) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号