首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
SiO_2/PVAc无机-有机复合微球的合成及其膜性能研究   总被引:1,自引:0,他引:1  
以纳米二氧化硅粒子(SiO2)为稳定剂,在少量反应型阴离子乳化剂——烯丙氧基羟丙磺酸钠(HAPS)作助稳定剂的情况下,制备了具有草莓型结构的二氧化硅/聚醋酸乙烯酯(SiO2/PVAc)无机-有机纳米复合微球.研究表明,纳米SiO2与PVAc的氢键作用是形成这种单分散草莓型SiO2/PVAc无机-有机纳米复合微球的关键.透射电镜(TEM)观察显示,纳米SiO2吸附在PVAc表面,形成草莓型结构.讨论了纳米二氧化硅溶胶的种类和用量、乳化剂种类对复合微球形态及其膜性能的影响,并讨论了复合微球的形成机理.  相似文献   

2.
草莓型SiO2/PMMA纳米复合微球的制备   总被引:5,自引:0,他引:5  
在纳米二氧化硅水分散体系中,借助于碱性辅助单体1-乙烯基咪唑(1-VID)与未改性纳米二氧化硅表面羟基之间的酸-碱作用,通过1-VID与甲基丙烯酸甲酯(MMA)的自由基共聚合,制备了草莓型的SiO2/PMMA复合微球.整个反应过程中,纳米二氧化硅无需表面处理,体系中无需另外加入乳化剂或助乳化剂,微球表面吸附的纳米二氧化硅对颗粒起稳定作用.用动态光散射粒度分布仪测得复合微球粒径在120-330nm之间,热重分析结果表明,复合微球中二氧化硅含量介于15%-20%之间.透射电镜和扫描电镜显示所得复合微球具有草莓型结构,二氧化硅富集在表面.  相似文献   

3.
Pickering乳液聚合制备核-壳结构PS-SiO2复合微球   总被引:1,自引:0,他引:1  
用二氯二甲基硅烷对纳米SiO2粒子进行疏水改性,当其表面Zeta电位由-54.8 mV变成-25.8 mV时,SiO2粒子就能在苯乙烯-水界面自组装,形成稳定的Pickering乳液,即以胶体粒子为乳化剂的乳液.利用Pickering乳液聚合制备了以聚苯乙烯(PS)为核、纳米SiO2为壳的PS-SiO2复合微球.用FT-IR、XPS、SEM、偏光显微镜等对复合微球进行了表征.结果表明:复合微球由聚苯乙烯和纳米二氧化硅粒子组成,二氧化硅粒子以单层、六方密排的方式分布在聚苯乙烯微球表面.  相似文献   

4.
采用水热法合成了巯基纳米二氧化硅(SiO2-SH),并在其表面修饰亚氨基二乙酸基团(-IDA)得到SiO2-SH/IDA微球.该微球从溶液中可吸附更多的Ni 2+形成SiO2-SH/IDA-Ni 2+复合微球.研究结果表明,利用该复合微球可以较好地分离以组氨酸为标签(His-tagged)的融合蛋白.  相似文献   

5.
在纳米二氧化硅水分散介质中,借助于正离子单体甲基丙烯酰氧乙基三甲基氯化铵(MTC)与未改性纳米二氧化硅颗粒之间的电荷作用,通过MTC与甲基丙烯酸甲酯(MMA)的自由基共聚合,制备了草莓型的PMMA/SiO2复合微球.整个制备反应过程中,纳米二氧化硅无需表面处理,体系中无需另外加入乳化剂或助乳化剂,微球表面吸附的纳米二氧化硅对颗粒起稳定作用.详细讨论了纳米二氧化硅初始添加量、MTC浓度对复合微球的平均粒径、复合微球中二氧化硅含量及微球形态的影响.动态光散射粒度分布仪(DLS)测得复合微球粒径在180~300 nm之间,热重分析(TGA)表明复合微球中二氧化硅含量介于16.4%~40.8%之间.透射电镜(TEM)显示所得复合微球具有草莓型结构,二氧化硅于表面富集.  相似文献   

6.
中空SiO_2纳米微球的制备与表征   总被引:1,自引:1,他引:0  
在乙醇/氨水介质中,将SiO2包覆在聚乙烯吡咯烷酮(PVP)功能化的聚苯乙烯(PS)微粒表面,利用一步法得到了中空纳米二氧化硅微球;研究了影响中空纳米二氧化硅微球形成的主要因素,并探讨了中空纳米SiO2微球的可能形成机理.结果表明,在一定的反应时间下,当氨水用量为0.6 mL、温度为70℃时,可以获得空心结构的SiO2纳米微球;通过控制四乙基原硅酸盐(TEOS)的量可以调节微球的包覆层厚度.  相似文献   

7.
提出了一种在室温、大气环境等温和条件下通过酯化反应将端羧基聚合物链接枝到纳米SiO2微球表面从而制备有机/无机复合纳米微粒的新方法.该方法通过以下两个步骤得以实现,即第一,用3-环氧丙基三甲氧基硅烷对纳米SiO2微球表面进行改性处理,接着将引入到纳米SiO2表面的环氧基团转化为烷羟基基团;第二,通过引入到纳米SiO2微球表面的烷羟基与聚合物中的端羧基在室温下发生酯化反应,从而将聚合物接枝到纳米SiO2表面制得复合微球.利用XPS、FTIR、TEM和TGA等测试手段对纳米SiO2的改性过程以及聚合物接枝后得到的复合微球进行了表征.研究结果表明,该室温酯化接枝方法具有较高的接枝率,接枝到无机纳米微粒表面的聚合物占复合微球质量的55wt%~70wt%;接枝聚合物后,纳米SiO2微球的粒径从40nm增加到64~75nm,从而得到了以SiO2为核、以聚合物为壳的有机-无机复合微球.  相似文献   

8.
电子染色技术在SiO2/P(St-co-BA)复合微球TEM表征中的应用   总被引:1,自引:0,他引:1  
以核壳型的二氧化硅/苯乙烯-丙烯酸丁酯共聚物[SiO2/P(St-co-BA)]纳米复合微球为例,首次采用电子染色技术研究了不同的染色条件(染色方式、染液用量及染色时间)对SiO2/P(St-co-BA)核壳复合微球形貌的透视电镜(TEM)观察效果的影响,实验证明,对于该体系,采用的混合染色法不仅安全有效,而且易于操作和控制;醋酸双氧铀的染色效果优于PTA;染色时间1min左右,染液用量控制在0.08%至0.16%之间能得到最佳效果.并讨论了该技术在有机-无机纳米复合微球形貌的TEM应用.  相似文献   

9.
采用一种简单和低成本的方法制备单分散SiO2包覆聚苯乙烯(PS)(PS/SiO2)核-壳型纳米复合微球.首先在聚乙烯吡咯烷酮(PVP)存在下制备了PS纳米微球,然后在NH4OH/乙醇溶液中通过溶胶-凝胶过程在PS微球表面包覆SiO2.PS纳米微球的制备在水介质中进行,无需使用共单体,使用的是常用的过硫酸钾自由基引发剂;包覆处理前不用进行溶剂交换或离心处理.研究了PVP,NH4OH和原硅酸乙酯(TEOS)的用量对PS/SiO2纳米复合微球尺寸和形态的影响.随着PVP用量增加,PS微球变小,因此得到较小的PS/SiO2纳米复合微球;NH4OH用量对SiO2包覆层的厚度没有影响,但对SiO2包覆层的表面形态有影响,随着NH4OH用量增加包覆层表面变得粗糙;随着TEOS溶液用量增加,生成的SiO2增加,其包覆层的厚度增加.  相似文献   

10.
制备方法对模板法制备SiO_2中空微球形貌的影响   总被引:1,自引:0,他引:1  
模板法是制备无机中空微球的重要方法之一.首先通过苯乙烯和甲基丙烯酸的无皂乳液聚合法制得表面含羧基、粒径为360nm的单分散聚苯乙烯(PSt)乳胶粒,并以此为模板,分别采用表面改性-前驱体水解法(PHC)和SiO2纳米颗粒层层自组装法(LBL),制备出了不同壳层厚度的PSt/SiO2核壳结构复合微球,然后经500℃煅烧4h,得到SiO2中空微球.利用透射电镜和扫描电镜对微球结构形态进行了表征.研究表明,首先利用γ-氨丙基三乙氧基硅烷(KH-550)对PSt模板微球进行表面改性、然后再在乙醇-水混合介质中进行原硅酸乙酯(TEOS)水解与缩合反应的PHC法,是制备PSt/SiO2核壳结构复合微球的简便方法,复合微球经煅烧可制得表面均匀、结构致密、壳层厚度和形貌可控的SiO2中空微球;而LBL法制备PSt/SiO2核壳结构复合微球的工艺复杂,煅烧后所得SiO2中空微球结构疏松,易于破碎.  相似文献   

11.
Raspberry-like composite microspheres with polystyrene (PS) cores and silica shell were prepared through miniemulsion polymerization by using the anionic sodium dodecyl sulfate (SDS) as a surfactant and 1-vinylimidazole (1-VID) as an auxiliary monomer. The strong acid–base interaction between acidic hydroxyl groups of silica surfaces and basic amino groups of 1-VID promote the formation of long-term stable PS/SiO2 nanocomposite microspheres. Transmission electron microscopy TEM studies indicated that the acid–base interaction between silica nanoparticles and auxiliary monomer was strong enough for the formation of colloidally stable composite microspheres, which have raspberry-like morphology. Influences of several synthetic parameters, such as initial silica amount, the amount of auxiliary monomer 1-VID, and SDS concentration on the polymerization stability, diameters, and morphology of the composite microspheres were studied. A tentative mechanism of the formation of nanocomposite particles was proposed.  相似文献   

12.
Raspberry-like composite microspheres with polystyrene (PSt) as cores and nanosilica particles as shell were prepared through miniemulsion polymerization by using the anionic sodium dodecyl sulfate (SDS) as surfactants and 2-(methacryloyl) ethyltrimethylammonium chloride (MTC) as auxiliary monomer. TEM indicated that the colloidally stable composite microspheres have the typical raspberry-like morphology. Zeta potential measurements confirmed that the positively charged MTC was located on the surface of the composite microspheres and had a drastic impact on the formation of the composite microspheres. The average particle sizes and the final silica contents of the composite microspheres could range from 150 to 250 nm and 10 to 40 wt%, respectively, depending upon the reaction conditions. The influences of some synthetic parameters, for instance, the initial silica amount, MTC amount and SDS concentration on the polymerization stability, diameters, silica contents and morphology of the composite microspheres were studied in detail.  相似文献   

13.
Water-borne raspberry-like PMMA/SiO2 nanocom-posite particles were prepared via free radical copolymerization of methyl methacrylate (MMA) with 1-vinylimidazole (1-VID) in the presence of ultrafine aqueous silica sols. The acid-base interaction between hydroxyl groups (acidic) of silica surfaces and amino groups (basic) of 1-VID was strong enough for promoting the formation of long-standing stable PMMA/SiO2 nanocomposite particles when 10 mol% or more 1-VID as auxiliary monomer was used. The average particle sizes and the silica contents of the nanocomposite particles were in the ranges from 120–330 nm and 15%–20%, respectively. TEM and SEM observations indicated a raspberry-like morphology of the obtained nanocomposite particles. __________ Translated from Chemical Journal of Chinese Universities, 2005, 26(7) (in Chinese)  相似文献   

14.
分别以过硫酸钾和偶氮二异丁基脒盐酸盐为引发剂,以聚乙烯吡咯烷酮(PVP)为分散剂,在水中引发苯乙烯聚合制备了2种表面分别带负电性和正电性基团的聚苯乙烯(PS)模板微球.在氨水催化下,利用正硅酸乙酯的水解缩合,形成PS/SiO_2复合微球,去除模板后得到中空SiO_2微球,并对其进行FTIR、电子显微镜、TGA以及氮气吸附等分析表征.结果表明,PS模板微球表面的电性决定了OH-的分布,从而导致PS模板微球表面SiO_2壳层不同的形成机制.当以表面带负电的PS微球为模板时,可得到树莓状的中空SiO_2微球;而以表面带正电的PS微球为模板时,得到是表面光滑的,具有介孔结构的中空SiO_2微球.  相似文献   

15.
具有核壳结构磁性复合微球的制备与表征   总被引:2,自引:0,他引:2  
龚涛  汪长春 《高分子学报》2008,(11):1037-1042
采用两步法制备了具有核壳结构的Fe3O4/P(MMA/DVB)(core)-P(St/GMA/DVB)(shell)磁性复合微球.首先,用改进的细乳液聚合制备了Fe3O4/P(MMA/DVB)微球;然后,加入总量不同的苯乙烯(St)、甲基丙烯酸缩水甘油酯(GMA)和二乙烯基苯(DVB),通过种子乳液聚合,制备了不同磁含量的核壳结构的磁性复合微球.分别用X-射线衍射(XRD)、高倍透射电镜(HR-TEM)、热重分析(TGA)、振动样品磁力计(VSM)等手段对磁性微球的性能进行了表征.实验结果表明,Fe3O4/P(MMA/DVB)微球的磁含量为84 wt%;通过改变加入壳层单体的量,核壳复合微球的磁含量可控在20 wt%~76 wt%之间.该微球具有超顺磁性,相应的饱和磁化强度为12~50Am2/kg.  相似文献   

16.
孙爱娟  高礼 《化学研究》2011,22(1):61-65
采用改进的悬浮聚合法合成了一系列粒径和结构可调的羰基铁粉/聚苯乙烯磁性高分子微球.利用傅立叶变换红外光谱仪、热重分析仪、X射线衍射仪、扫描电镜等分析了微球的结构、化学成分及形貌.结果表明,通过改变苯乙烯单体和聚乙烯醇(PVA)的加入量,可以制备三类不同形貌和结构的复合微球,即多孔复合微球,无孔复合微球和含"带状"突起的...  相似文献   

17.
Synthesis of PVAc/SiO2 latices stabilized by silica nanoparticles   总被引:2,自引:0,他引:2  
This paper presents a method for the preparation of raspberry-like organic-inorganic composite spheres with poly(vinyl acetate) (PVAc) as core and nanosilica particles as shell. A small amount of anionic reactive surfactant, 3-allyloxy-2-hydroxy-1-propanesulfonic acid sodium salt (HAPS), was used as co-stabilizer and nanosilica particles were adsorbed onto the growing latex core in aqueous medium via the formation of hydrogen bonds between nanosilica particles and PVAc particles. TEM indicated that the hydrogen bonds between nanosilica particles and PVAc were strong enough for the formation of long-stable composite spheres with raspberry-like morphology. Influences of some synthetic parameters, for instance, type of silica sol, initial silica amount, and different kinds of low-molecular-weight surfactant, on the morphology of the composite spheres and properties of the latex films were studied in detail. A possible formation mechanism of the composite spheres was also proposed.  相似文献   

18.
《中国化学快报》2023,34(4):107499
The morphology regulation of hollow silica microspheres is significant for their properties and applications. In this paper, hollow silica microspheres were formed through the hydrolysis and condensation reaction of tetraethyl orthosilicate (TEOS) at the interface of the emulsion droplet templates composed of liquid paraffin and TEOS, followed by dissolving paraffin with ethanol. The effects of various factors including the emulsifier structure and content, TEOS content, catalyst type, and the ethanol content in the continuous water phase on the particle size, shell thickness and morphology of the prepared hollow silica microspheres were studied in detail. The results show that the diffusion and contact of TEOS and water molecules as well as the hydrolysis condensation reaction of TEOS at the oil-water interface are two critical processes for the synthesis and morphological regulation of hollow silica microspheres. Cationic emulsifier with a hydrophobic chain of appropriate length is the prerequisite for the successful synthesis of hollow silica microspheres. The ethanol content in water phase is the dominant factor to determine the average diameter of hollow microspheres, which can vary from 96 nm to 660 nm with the increase of the volume ratio of alcohol-water from 0 to 0.7. The silica wall thickness varies with the content and the hydrophobic chain length of the emulsifier, TEOS content, and the activity of the catalyst. The component of the soft template will affect the morphology of the silica wall. When the liquid paraffin is replaced by cyclohexane, hollow microspheres with fibrous mesoporous silica wall are fabricated. This work not only enriches the basic theory of interfacial polymerization in the emulsion system, but also provides ideas and methods for expanding the morphology and application of hollow silica microspheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号