首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction Nonlinearoptical(NLO)organicpolymers havereceivedincreasingattentionbecauseoftheir excellentbehaviorandgoodprospectsforapplica- tiontohightechnologiessuchasopticalcommuni- cation,highdensityopticalstorageandall-optical informationprocess[1_4].Thepoly[heteroarylene- methines]andtheirderivativesareregardedaspo- tentiallyapplicativeNLOmaterials[5_8],buttheir solubilityandfilm-formingperformancearenot goodwhichisabottleneckproblemfortheapplica- tionofthesepolymers.Inthisstudy,anovel…  相似文献   

2.
Introduction Nonlinearoptical(NLO)organicpolymers havereceivedincreasingattentionbecauseoftheir excellentbehaviorandthegoodprospectsoftheir applicationsinhigh-techareas,suchasoptical communication,high-densityopticalstorageand all-opticalinformationprocess.Poly(pyrrolylme- thine)isanNLOmaterialwithpromisingapplica- tions[1_3].However,itssolubilityandfilm-forming performancearepoor.Inthispaper,anovelsolu- blepoly(pyrrolylmethine),poly[(3-octanoyl-pyr- role-2,5-diyl)-p-(N,N-dimethylamino)ben…  相似文献   

3.
Electrical conductivity and optical properties of polypyrrole-chitosan(PPy-CHI) conducting polymer composites have been investigated to determine the optical transition characteristics and energy band gap of composite films.The two electrode method and I-V characteristic technique were used to measure the conductivity of the PPy-CHI thin films,and the optical band gap was obtained from their ultraviolet absorption edges.Depending upon experimental parameter,the optical band gap(Eg) was found within 1.30-2.32 eV as estimated from optical absorption data.The band gap of the composite films decreased as the CHI content increased.The room temperature electrical conductivity of PPy-CHI thin films was found in the range of 5.84×10-7-15.25×10-7 S·cm-1 depending on the chitosan content.The thermogravimetry analysis(TGA) showed that the CHI can improve the thermal stability of PPy-CHI composite films.  相似文献   

4.
Electrical conductivity, optical, thermoelectric, and dielectrical properties of the poly(1,12-bis(carbazolyl) dodecane) film have been investigated. The activation energy for electrical conductivity and room-temperature electrical conductivity (at 25 degrees C) values were found to be 0.25 eV and 2.65 x 10-6 S/cm, respectively. The thermoelectric power results suggest that the conductivity is due to large polarons (i.e., the carriers in polymer move by hopping in the localized states at band gap edges). Electrical conductivity and thermoelectric power results confirm that the polymer is a p-type organic semiconductor. Optical absorption results suggest that the direct allowed transitions are dominant in the fundamental absorption edge in the polymer with optical band gap value of 2.72 eV. The refractive index dispersion of the polymer obeys the single oscillator model with oscillator energy (Eo = 3.06 eV) and dispersion energy (Ed = 17.82 eV) values. Alternating current conductivity results suggest that the hopping conductivity is dominant in the polymer. The dielectrical properties exhibit a non-Debye relaxation.  相似文献   

5.
Small band gap polymers may increase the energy conversion efficiency of polymer solar cells by increased absorption of sunlight. Here we present a combined experimental and theoretical study on the optical and electrochemical properties of a series of well-defined, lengthy, small band gap oligo(5,7-bis(thiophen-2-yl)thieno[3,4-b]pyrazine)s ( E g = 1.50 eV) having alternating donor and acceptor units. The optical absorptions of the ground state, triplet excited state, radical cation, and dication are identified and found to shift to lower energy with increasing chain length. The reduction of the band gap in these alternating small band gap oligomers mainly results from an increase of the highest occupied molecular orbital (HOMO) level. The S 1-T 1 singlet-triplet splitting is reduced from approximately 0.9 eV from the trimeric monomer to -0.5 eV for the pentamer. This significant exchange energy is consistent with the fact that both the HOMO and the lowest unoccupied molecular orbital (LUMO) remain distributed over virtually all units, rather than being localized on the D and A units.  相似文献   

6.
一种新型低带隙共轭聚合物的合成及其光学性质   总被引:2,自引:0,他引:2  
刘中义  李彦军  黄鹏程 《化学学报》2008,66(8):999-1002
在钯催化剂作用下, 通过4,7-二(5-溴-2-噻吩基)[2,1,3]苯并噻二唑与2,5-二乙炔基-3-辛基噻吩的偶联反应, 合成了一种新的共轭高分子聚4,7-二(2-噻吩基)苯并噻二唑-3-辛基噻吩二炔(PTE-DTBT). 通过紫外可见吸收光谱及荧光光谱对其光学性质进行了研究. 紫外-可见吸收谱结果表明, PTE-DTBT的固体膜光学带隙为1.71 eV; 电化学测试其带隙为1.88 eV. TiO2/PTE-DTBT共混固体膜的荧光发射谱结果表明电子供体PTE-DTBT分子与电子受体TiO2分子间存在有效的电子转移.  相似文献   

7.
We have synthesized and investigated the photophysical properties of a series of electron-donor conjugated copolymers with pendant electron-acceptor units. The copolymers consist of diethynyl-1,4-phenylene, fluorene, or phenylene rings alternating with a phenylene unit bearing a pendant 9,10-anthraquinone moiety. The pendant donor-acceptor polymers were designed to have different optical pi-pi* band gaps, while the oxidation potential of the polymer backbone remains approximately constant in the series. The reduction potential of the donor-acceptor polymers is associated with the pendant acceptor units. This leads to the special situation that the electrochemical gap between oxidation and reduction potentials is constant, while the optical band gap decreases, going from PPP, via PPF, to PPE. This design is used to study the effect of the optical gap on the photoinduced electron-transfer reaction that occurs between the main chain electron donor and the pendant acceptor, while the same polymer architecture and energy of the charge separated state are maintained. Fluorescence and photoinduced absorption spectroscopy are used to study the electron transfer following photoexcitation in relation to solvent polarity and in thin solid films. For the fluorene-phenylene alternating copolymer, intramolecular photoinduced electron transfer occurs in the Marcus optimal region.  相似文献   

8.
Nanometer-sized mixed metal oxide (MMO) particles (Zn1-xMgxO) with very precise stoichiometry are prepared employing a polymer-based method. The precursor is formed by loading a polyacrylate with metal ions followed by purification of the polymer metal ion complex via repeated precipitation/redissolution cycles. Calcination of the polymer precursor at 550 degrees C gives particles of the metastable solid solution of the ZnO/MgO system in the composition range (x<0.2 and x>or=0.82). The MMO crystal particles are typically 20-50 nm in diameter. Doping of the ZnO by Mg2+ causes a shrinkage of lattice parameter c. Effects of band gap engineering on the optical band gap are reported. The photoluminescence in the visible is also affected, and its maximum shifts from 2.12 eV (pure ZnO) to 2.32 eV at x=0.21. The crystalline MMO particles start to undergo segregation into hexagonal and cubic phases upon annealing at 800 degrees C.  相似文献   

9.
Electropolymerization of the title compound leads to a conjugated polymer with redox potential, band gap, optical transparency in the doped state and stability similar to those of PEDOT.  相似文献   

10.
Effect of 1.25 MeV gamma radiation on the structural and optical properties of virgin and gamma irradiated (0-2000 kGy) Polyethyleneterephthalate (PET) polymer samples are analyzed using powder X-ray diffractometer and UV-vis spectrophotometer. Diffraction pattern of PET polymer indicates the semi-crystalline in nature whereas the crystallinity increases with increasing dose of irradiation. The remarkable variation in crystallite size is also observed. The absorption and activation energy increase and the optical band gap (Eg) decreases with increasing dose in UV-vis studies. The existence of the maximum absorption, their shifting and broadening due to gamma irradiation in PET polymer are also discussed.  相似文献   

11.
含噻吩的窄带隙共轭聚合物类太阳能电池材料因其良好的稳定性和可加工性,已成为新型太阳能电池的研究热点。本论文主要介绍了用于太阳能电池的窄带隙共轭聚合物研究进展,按其结构特征分为烷基/烷氧基取代聚噻吩、含苯基聚噻吩、基于噻吩并吡嗪的共聚物、基于噻吩并噻唑的共聚物、基于噻吩并吩噻嗪的共聚物、基于烷基芴的共聚物以及其它种类的窄带隙的共轭聚合物,并对它们的结构特点、光学带隙、合成方法进行了归纳与总结。本文最后简要介绍了该研究领域目前所面临的一些问题,同时讨论了该类材料在此领域今后的发展趋势。  相似文献   

12.
(-)-Sparteine-mediated asymmetric synthesis of di-n-octyl-substituted carbon-sulfur [11]helicene, a helical (C2S)n beta-undecathiophene, is described. The atom-efficient routes rely on one-step tri-annelation or two-step di- and mono-annelation to provide enantiomeric excess of (+)- or (-)-[11]helicene, respectively. X-ray structures for homologous [11] and [7]helicenes indicate similar helical curvatures. The optical band gap, Eg approximately 3.5 eV, is estimated for the (C2S)n helix polymer, with onset of electron localization at n 相似文献   

13.
A new, low-band-gap alternating copolymer consisting of terthiophene and isoindigo has been designed and synthesized. Solar cells based on this polymer and PC(71)BM show a power conversion efficiency of 6.3%, which is a record for polymer solar cells based on a polymer with an optical band gap below 1.5 eV. This work demonstrates the great potential of isoindigo moieties as electron-deficient units for building donor-acceptor-type polymers for high-performance polymer solar cells.  相似文献   

14.
The electrical conductivity and optical properties of the poly(1,4‐diaminoanthraquinone) [poly(1,4‐DAAQ)] have been investigated. The electrical conductivity of the polymer increases with temperature and room temperature conductivity was found to be 2.68 10?5 S cm?1. The optical band gap of the polymer is 1.87 eV due to the direct optical transitions. The photoconductivity of the polymer is higher than that of dark conductivity. When the light is switched on, the resistance decreases abruptly and when it is switched off, the resistance increases. This confirms that the polymer is a photoconductive material. The obtained results indicate that the poly(1,4‐DAAQ) is a photoconducting organic semiconductor with photovoltaic and dark current properties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The electrical conductivity, thermoelectric power, and dielectric properties of polyaniline doped by boric acid (PANI‐B) have been investigated. The room temperature electrical conductivity of PANI‐B was found to be 1.02 × 10?4 S cm?1. The thermoelectric power factor for the polymer was found to be 0.64 µW m?1 K?2. The optical band gap of the PANI‐B was determined by optical absorption method, and the PANI‐B has a direct optical band gap of 3.71 eV. The alternating charge transport mechanism of the polymer is based on the correlated barrier hopping (CBH) model. The imaginary part of the dielectric modulus for the PANI‐B suggests a temperature dependent dielectric relaxation mechanism. Electrical conductivity and thermoelectric power results indicate that the PANI‐B is an organic semiconductor with thermally activated conduction mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Journal of Solid State Electrochemistry - Ca[Fe]2O4 prepared by nitrate route is a narrow band gap semiconductor crystallizing in the normal spinel structure. The direct optical band gap Eg (1.93...  相似文献   

17.
This study explored a new approach to fabricate the Schiff base ligand system from both ethylenediamine and 3-chloro-2-butanone. Through coordination chemistry, the mercury Hg (II) complex was achieved from the ligand and then embedded in the polyvinyl alcohol (PVA) host using a solution casting technique to prepare polymer composites (PCs). Both UV–visible and Fourier-transform infrared (FTIR) spectroscopies highlighted the formation of the Hg (II) metal complex. These techniques confirmed the synthesis of the Hg (II) metal complex. The X-ray diffraction (XRD) pattern of the polymer composite has shown a significant enhancement in its amorphous nature compared to the pure PVA host. The thermal analysis spectra for the Hg (II) complex revealed high thermal stability. The occurrence of the complexation between the Hg (II) and host matrix of the PVA was identified from the wide shifting of UV–vis absorption and peak shifting with intensity reduction of the FTIR spectra. Tauc's method has been employed to evaluate the optical band gap, and determine the types of electronic transitions. The results have shown that the samples were exhibiting an indirect forbidden electron transition, with a significant reduction in the optical band gap of a doped sample that approaching inorganic semiconductor based-materials. In addition, the optical study has exposed the role of the Hg (II) complex in tuning the refractive index of the host polymer. Ultimately, the absorption edge was found to be shifted to the lower photon energy upon the insertion of the Hg (II) complex. The PVA doped sample displayed a substantial shift in band gap from 6.2 eV to 1.2 eV.  相似文献   

18.
合成了一系列给体-受体-给体型窄带隙荧光分子, 并将其作为掺杂剂与主体(Host)宽带隙聚芴共混制备发光二极管. 荧光分子为4,7-二呋喃-苯并噻二唑(O-S)、4,7-二噻吩-苯并噻二唑(S-S)、4,7-二(N-甲基吡咯)-苯并噻二唑(N-S)、4,7-二硒吩-苯并噻二唑(Se-S)和4,7-二(N-甲基吡咯)-苯并硒二唑(N-Se). 溶液中荧光分子的紫外-可见吸收峰位于447~472 nm, 荧光发射峰位于563~637 nm. 该系列荧光分子掺杂聚芴(PFO)发光器件的电致发光峰位于580~633 nm. 当器件结构为ITO/PEDOT/PVK/PFO+N-Se/Ba/Al时, 最大外量子效率为1.28%, 电流效率1.31 cd/A.  相似文献   

19.
The band structure and electronic properties in a series of vinylene-linked heterocyclic conducting polymers are investigated using density functional theory (DFT). In order to accurately calculate electronic band gaps, we utilize hybrid functionals with fully periodic boundary conditions to understand the effect of chemical functionalization on the electronic structure of these materials. The use of predictive first-principles calculations coupled with simple chemical arguments highlights the critical role that aromaticity plays in obtaining a low band gap polymer. Contrary to some approaches which erroneously attempt to lower the band gap by increasing the aromaticity of the polymer backbone, we show that being aromatic (or quinoidal) in itself does not ensure a low band gap. Rather, an iterative approach which destabilizes the ground state of the parent polymer toward the aromatic ? quinoidal level crossing on the potential energy surface is a more effective way of lowering the band gap in these conjugated systems. Our results highlight the use of predictive calculations guided by rational chemical intuition for designing low band gap polymers in photovoltaic materials.  相似文献   

20.
Recent research advances on conjugated polymers for photovoltaic devices have focused on creating low band gap materials, but a suitable band gap is only one of many performance criteria required for a successful conjugated polymer. This work focuses on the design of two medium band gap (~2.0 eV) copolymers for use in photovoltaic cells which are designed to possess a high hole mobility and low highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels. The resulting fluorinated polymer PBnDT-FTAZ exhibits efficiencies above 7% when blended with [6,6]-phenyl C(61)-butyric acid methyl ester in a typical bulk heterojunction, and efficiencies above 6% are still maintained at an active layer thicknesses of 1 μm. PBnDT-FTAZ outperforms poly(3-hexylthiophene), the current medium band gap polymer of choice, and thus is a viable candidate for use in highly efficient tandem cells. PBnDT-FTAZ also highlights other performance criteria which contribute to high photovoltaic efficiency, besides a low band gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号