共查询到20条相似文献,搜索用时 15 毫秒
1.
Teruki Kamon P. Ko Jinmian Li 《The European Physical Journal C - Particles and Fields》2017,77(9):652
We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with \(\sqrt{s} = 500\) GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling \(g_\chi \) is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator \(H_2\). The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for \(g_\chi \) approaching the perturbative limit, benchmark points with the mediator \(H_2\) in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising. 相似文献
2.
We construct a little Higgs model with the most minimal extension of the standard model gauge group by an extra U(1) gauge symmetry. For specific charge assignments of scalars, an approximate U(3) global symmetry appears in the cutoff-squared scalar mass terms generated from gauge bosons at one-loop level. Hence, the Higgs boson, identified as a pseudo-Goldstone boson of the broken global symmetry, has its mass radiatively protected up to scales of 5–10 TeV. In this model, a Z2 symmetry, ensuring the two U(1) gauge groups to be identical, also makes the extra massive neutral gauge boson stable and a viable dark matter candidate with a promising prospect of direct detection. 相似文献
3.
The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z2 parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stückelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson. 相似文献
4.
We investigate the strongly coupled minimal walking technicolor model (MWT) in the framework of a bottom-up holographic model, where the global \begin{document}$ SU(4)$\end{document} ![]()
![]()
symmetry breaks into \begin{document}$ SO(4)$\end{document} ![]()
![]()
subgroups. In the holographic model, we found that 125 GeV composite Higgs particles and small Peskin–Takeuchi S parameter can be achieved simultaneously. In addition, the model predicts a large number of particles at the TeV scale, including dark matter candidates Technicolor Interacting Massive Particles (TIMPs). If we consider the dark matter nuclear spin-independent cross-section in the range of \begin{document}$ 10^{-45}\sim 10 ^ {-48} \;{\rm{cm}}^2$\end{document} ![]()
![]()
, which can be detected by future experiments, the mass range of TIMPs predicted by the holographic technicolor model is \begin{document}$ 2 \sim 4$\end{document} ![]()
![]()
TeV. 相似文献
5.
I. F. Ginzburg 《JETP Letters》2014,99(12):742-751
The set of sum rules for a wide class of nonminimal Higgs models has been obtained. Difficulties and ways for revealing the possibilities of studying extended Higgs models at colliders have been revealed with the use of these sum rules and recent LHC results. New methods of studying multidoublet Higgs models with various symmetry groups have been applied to solve problems of classification of these groups, breaking of symmetries in vacuum, etc. A method for the determination of masses and spins of dark-matter particles D and their partners via the energy spectrum of a lepton in the e + e ? → DDW + W ? process has been proposed. The possibility of the existence of strongly interacting dark matter has been revealed. Variants of the evolution of the phase states of the Universe have been analyzed within the inert doublet model. 相似文献
6.
Masaki Asano Shigeki Matsumoto Masato Senami Hiroaki Sugiyama 《Physics letters. [Part B]》2008,663(4):330-333
Phenomenology of neutralino dark matter in the minimal supersymmetric model is discussed for a scenario where the lightest Higgs boson mass is lighter than 114.4 GeV. We show that the scenario is consistent not only with many collider experiments but also with the observed relic abundance of dark matter. The allowed region may be probed by experiments of Bs→μ+μ− in near future. The scenario predicts a large scattering cross section between the dark matter and ordinary matter and thus it may be tested in present direct detection experiments of dark matter. 相似文献
7.
One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite. 相似文献
8.
Kusenko A 《Physical review letters》2006,97(24):241301
We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider. 相似文献
9.
A cosmological model of an holographic dark energy interacting with dark matter throughout a decaying term of the form Q=3(λ1ρDE+λ2ρm)H is investigated. General constraint on the parameters of the model are found when accelerated expansion is imposed and we found a phantom scenario, without any reference to a specific equation of state for the dark energy. The behavior of equation of state for dark energy is also discussed. 相似文献
10.
For the experimental search of neutralino dark matter, it is important to know its allowed mass and scattering cross section with the nucleon. In order to figure out how light a neutralino dark matter can be predicted in low energy supersymmetry, we scan over the parameter space of the NMSSM (next-to-minimal supersymmetric model), assuming all the relevant soft mass parameters to be below TeV scale. We find that in the parameter space allowed by current experiments the neutralino dark matter can be as light as a few GeV and its scattering rate off the nucleon can reach the sensitivity of XENON100 and CoGeNT. As a result, a sizable parameter space is excluded by the current XENON100 and CoGeNT data (the plausible CoGeNT dark matter signal can also be explained). The future 6000 kg-days exposure of XENON100 will further explore (but cannot completely cover) the remained parameter space. Moreover, we find that in such a light dark matter scenario a light CP-even or CP-odd Higgs boson must be present to satisfy the measured dark matter relic density. Consequently, the SM-like Higgs boson hSM may decay predominantly into a pair of light Higgs bosons or a pair of neutralinos so that the conventional decays like hSM→γγ is much suppressed. 相似文献
11.
Daijiro Suematsu 《Progress in Particle and Nuclear Physics》2010,64(2):454-456
We discuss a possibility to relate neutrino mass to dark matter. If we suppose that neutrino masses are generated through a radiative seesaw mechanism, dark matter may be identified with a stable field which is relevant to the neutrino mass generation. The model is severely constrained by lepton flavor violating processes. We show some solutions to this constraint. 相似文献
12.
14.
In a recently proposed scenario for primordial inflation, where the Standard Model (SM) Higgs boson plays a role of the inflation field, an effective field theory (EFT) approach is the most convenient for working out the consequences of breaking of perturbative unitarity, caused by the strong coupling of the Higgs field to the Ricci scalar. The domain of validity of the EFT approach is given by the ultraviolet (UV) cutoff, which, roughly speaking, should always exceed the Hubble parameter in the course of inflation. On the other hand, applying the trusted principles of quantum gravity to a local EFT demands that it should only be used to describe states in a region larger than their corresponding Schwarschild radius, manifesting thus a sort of UV/IR correspondence. We consider both constraints on EFT, to ascertain which models of the SM Higgs inflation are able to simultaneously comply with them. We also show that if the gravitational coupling evolves with the scale factor, the holographic constraint can be alleviated significantly with minimal set of canonical assumptions, by forcing the said coupling to be asymptotically free. 相似文献
15.
We show that fermionic dark matter (DM) which communicates with the Standard Model (SM) via the Higgs portal is a viable scenario, even if a SM-like Higgs is found at around 125 GeV. Using effective field theory we show that for DM with a mass in the range from about 60 GeV to 2 TeV the Higgs portal needs to be parity violating in order to be in agreement with direct detection searches. For parity conserving interactions we identify two distinct options that remain viable: a resonant Higgs portal, and an indirect Higgs portal. We illustrate both possibilities using a simple renormalizable toy model. 相似文献
16.
We propose a model based on a DBI action for the unification of dark matter and dark energy. This is supported by the results of the study of its background behavior at early and late times, and reinforced by the analysis of the evolution of perturbations. We also perform a Bayesian analysis to set observational constraints on the parameters of the model using type Ia SN, CMB shift and BAO data. Finally, to complete the study we investigate its kinematics aspects, such as the effective equation of state parameter, acceleration parameter and transition redshift. Particularizing those parameters for the best fit one appreciates that an effective phantom is preferred. 相似文献
17.
18.
We point out that the lightest Kaluza–Klein particle (LKP) dark matter in universal extra dimension (UED) models efficiently annihilates through the coannihilation process including the first KK Higgs bosons when the Higgs mass is slightly heavy as 200–230 GeV, which gives the large Higgs self-coupling. The large self-coupling naturally leads the mass degeneracy between the LKP and the first KK Higgs bosons and large annihilation cross sections of the KK Higgs bosons. These are essential for the enhancement of the annihilation of the LKP dark matter, which allows large compactification scale ∼1 TeV to be consistent with cosmological observations for the relic abundance of dark matter. We found that the thermal relic abundance of the LKP dark matter could be reconciled with the stringent constraint of electroweak precision measurements in the minimal UED model. 相似文献
19.
In the framework of the constrained minimal supersymmetric standard model (CMSSM) we discuss the impact of the pseudo-scalar
Higgs boson in delineating regions of the parameters which are consistent with cosmological data and E821 data on the anomalous
magnetic moment of the muon. For the large values of the parameter , cosmologically allowed corridors of large are opened, due to the s-channel pseudo-scalar exchange in the pair annihilation of the lightest of the neutralinos to or , which dominates in this region. However, no such corridors are found for values . Combining cosmological and E821 data puts severe upper limits on the sparticle masses. We find that at LHC, but even at
a linear collider with center of mass energy GeV, such as TESLA, supersymmetry can be discovered, if it is based on the CMSSM.
Received: 22 July 2001 / Revised version: 13 November 2001 / Published online: 18 January 2002 相似文献