首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amide bond N?C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N?C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C?C, C?N, C?O and C?S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.  相似文献   

2.
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN→π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17O NMR and 15N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.  相似文献   

3.
Pure (Z)-enamines readily prepared from beta-ketoesters and amides using (S)-phenylglycine amide were hydrogenated with very high diastereoselectivities (up to 200:1) using heterogeneous catalysis. Hydrogenolytic cleavage of the (S)-phenylglycine amide afforded the corresponding chiral beta-aminoesters and amides. The high geometrical purity of the (Z)-enamine and a simple activation procedure for the PtO2 catalyst are essential in achieving high selectivity.  相似文献   

4.
We describe a single-step conversion of various N-vinyl and N-aryl amides to the corresponding pyrimidine and quinazoline derivatives, respectively. The process involves amide activation with 2-chloropyridine and trifluoromethanesulfonic anhydride followed by nitrile addition into the reactive intermediate and cycloisomerization. In situ nitrile generation from primary amides allows for their use as nitrile surrogates. The use of this chemistry with sensitive N-vinyl amides and epimerizable substrates in addition to a wide range of functional groups is noteworthy.  相似文献   

5.
Herein, we show that acyclic amides that have recently enabled a series of elusive transition‐metal‐catalyzed N?C activation/cross‐coupling reactions are highly twisted around the N?C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N‐glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α‐carbon atom. The 15N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground‐state twist as a blueprint for activation of amides toward N?C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non‐planar amide bonds.  相似文献   

6.
A new approach for the fully chemoselective α‐arylation of amides is presented. By means of electrophilic amide activation, aryl groups can be regioselectively introduced α‐ to amides, even in the presence of esters and alkyl ketones. Mechanistic studies reveal key reaction intermediates and emphasize a remarkably subtle base effect in this transformation.  相似文献   

7.
A series of N-alkyl- and N-aryl-t-butyldimethylsilyl amides have been prepared by amination and their structures determined by IR and NMR spectroscopy. Like their trimethylsilyl counterparts, the N-alkyl derivatives exist as amides while the N-aryl derivates exist as amide/imidate mixtures. The percentage of imidate and the free energies of activation for the imidate/amide exchange in the aryl derivatives are greater than those in the trimethylsilyl derivatives. The barriers to rotation in the amide form of the aryl derivatives are similar to those of the trimethylsilyl derivatives. The barrier for rotation in t-butyldimethylsilyl-N-methyl formamide, however, is lower than that of the trimethylsilyl derivative. Isomer ratios and free energies of activation are rationalized in terms of the steric effect of the t-butyl group.  相似文献   

8.
The first Ni‐catalyzed Suzuki–Miyaura coupling of amides for the synthesis of widely occurring biaryl compounds through N?C amide bond activation is reported. The reaction tolerates a wide range of electron‐withdrawing, electron‐neutral, and electron‐donating substituents on both coupling partners. The reaction constitutes the first example of the Ni‐catalyzed generation of aryl electrophiles from bench‐stable amides with potential applications for a broad range of organometallic reactions.  相似文献   

9.
Imidazole/polyamine amides are biologically important molecules due to their specific DNA binding activity, and much attention has been attracted to the synthesis of their derivatives or analogues. In the present studies, the fragmentation of a series of synthetic monoimidazole/polyamine amides was investigated using electrospray ionization mass spectrometry (ESI-MS) combined with tandem mass spectrometry (ESI-MS/MS). All of the monoimidazole/polyamine amides produced the fragment ion m/z 183 except for the monoimidazole/ethyldiamine amide. The diamine amides produced this ion after the elimination of an alkene, the triamine amides produced it via their corresponding diamine amide fragments, and the tetraamine amide via its triamine and then diamine amide fragments. The characterization of the mass spectra for the different polyamine amides allowed identification of a specific product from the N-acylation of spermidine, and should assist further study of the polyamine amides in DNA binding action.  相似文献   

10.
The direct transformation of various secondary amides into N-arylimidates via mild electrophilic amide activation with trifluoromethanesulfonic anhydride (Tf2O) in the presence of 2-chloropyridine (2-ClPyr) is described. Low-temperature amide activation followed by C-O bond formation with 2-naphthol provides the desired N-arylimidates in short overall reaction times. In contrast, reaction with oxindole proceeds via formation of a C-C bond to give 1-(1H-indol-2-yl)naphthalene-2-ol.  相似文献   

11.
We report a thermodynamic investigation of the adsorption of saturated and unsaturated (cis- and trans-) alkyl amides onto the surface of graphite from their pure liquids and from binary mixtures. We identify the formation of solid monolayers of the amides at temperatures when the bulk materials are liquid. The extent of this presolidification is much more extensive than other related materials, indicating that these amide layers are significantly more stable. The monolayer stability is found to be greatest for saturated amides. In addition, the stability of unsaturated amides is extremely sensitive to the location of the double bonds in the alkyl chain of the molecules, and trans isomers are found to be more stable than cis. We also address the preferential adsorption and mixing behavior of amide mixtures and amides mixed with other species coadsorbed onto graphite from binary solution. The results indicate that the amide molecules appear to be adsorbed with their principal axis parallel to the graphite surface and that amides are found to be strongly preferentially adsorbed with respect to alkanes. Interestingly the amides appear to mix rather better than might have been expected. There is also evidence of a number of other transitions in the adsorbates.  相似文献   

12.
N,N-dialkoxyamides 1c, a virtually unstudied member of the new class of anomeric amides, amides bearing two electronegative atoms at nitrogen, have been synthesised in useful yields directly from hydroxamic esters using phenyliodine(III)bis(trifluoroacetate) (PIFA). Infrared carbonyl stretch frequencies and carbonyl (13)C NMR properties have been reported, which support strong inhibition of amide resonance in these amides. Their thermal decomposition reactions in mesitylene at 155 °C proceed by homolysis to form alkoxyamidyl and alkoxyl free radicals in preference to HERON rearrangements to esters. The reactions follow first-order kinetics and for a series of N,N-dimethoxy-4-substituted benzamides, activation energies of 125-135 kJ mol(-1) have been determined together with weakly negative entropies of activation.  相似文献   

13.
Here we show that amides of bicyclic 7-azabicyclo[2.2.1]heptane are intrinsically nitrogen-pyramidal. Single-crystal X-ray diffraction structures of some relevant bicyclic amides, including the prototype N-benzoyl-7-azabicyclo[2.2.1]heptane, exhibited nitrogen-pyramidalization in the solid state. We evaluated the rotational barriers about the amide bonds of various N-benzoyl-7-azabicyclo[2.2.1]heptanes in solution. The observed reduction of the rotational barriers of the bicyclic amides, as compared with those of the monocyclic pyrrolidine amides, is consistent with a nitrogen-pyramidal structure of 7-azabicyclo[2.2.1]heptane amides in solution. A good correlation was found between the magnitudes of the rotational barrier of N-benzoyl-7-azabicyclo[2.2.1]heptanes bearing para-substituents on the benzoyl group and the Hammett's sigma(p)(+) constants, and this is consistent with the similarity of the solution structures. Calculations with the density functional theory reproduced the nitrogen-pyramidal structures of these bicyclic amides as energy minima. The calculated magnitudes of electron delocalization from the nitrogen nonbonding n(N) orbital to the carbonyl pi orbital of the amide group evaluated by application of the bond model theory correlated well with the rotational barriers of a variety of amides, including amides of 7-azabicyclo[2.2.1]heptane. The nonplanarity of the amide nitrogen of 7-azabicyclo[2.2.1]heptanes would be derived from nitrogen-pyramidalization due to the CNC angle strain and twisting of the amide bond due to the allylic strain.  相似文献   

14.
A highly diastereoselective method for the synthesis of dihydroepoxybenzofluorenone derivatives from aromatic/vinylic amides and bicyclic alkenes is described. This new transformation proceeds through cobalt‐catalyzed C?H activation and intramolecular nucleophilic addition to the amide functional group. Transition‐metal‐catalyzed C?H activation reactions of secondary amides with alkenes usually lead to [4+2] or [4+1] annulation; to the best of our knowledge, this is the first time that a [3+2] cycloaddition is described in this context. The reaction proceeds under mild conditions and tolerates a wide range of functional groups. Mechanistic studies imply that the C?H bond cleavage may be the rate‐limiting step.  相似文献   

15.
The first TiCl(4)-mediated condensation of secondary amides with aldehydes and ketones has been achieved. The reaction proceeds at room temperature and is complete within 5 h in most cases. The optimized procedure used 5 equiv of an amine base hinting that the in situ activation of both the amide and the Lewis acid is required. The reaction affords polysubstituted (E)-enamides.  相似文献   

16.
A synthetically convenient approach for the direct α-deuteration of amides is reported. This mechanistically unusual process relies on a retro-ene-type process, triggered by the addition of deuterated dimethyl sulfoxide to a keteniminium intermediate, generated through electrophilic amide activation. The transformation displays broad functional-group tolerance and high deuterium incorporation.  相似文献   

17.
The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions.  相似文献   

18.
One advantage of detecting amide H/2H exchange by mass spectrometry instead of NMR is that the more rapidly exchanging surface amides are still detectable. In this study, we present quench-flow amide H/2H exchange experiments to probe how rapidly the surfaces of two different proteins exchange. We compared the amide H/2H exchange behavior of thrombin, a globular protein, and IkappaBalpha, a nonglobular protein, to explore any differences in the determinants of amide H/2H exchange rates for each class of protein. The rates of exchange of only a few of the surface amides were as rapid as the "intrinsic" exchange rates measured for amides in unstructured peptides. Most of the surface amides exchanged at a slower rate, despite the fact that they were not seen to be hydrogen bonded to another protein group in the crystal structure. To elucidate the influence of the surface environment on amide H/2H exchange, we compared exchange data with the number of amides participating in hydrogen bonds with other protein groups and with the solvent accessible surface area. The best correlation with amide H/2H exchange was found with the total solvent accessible surface area, including side chains. In the case of the globular protein, the correlation was modest, whereas it was well correlated for the nonglobular protein. The nonglobular protein also showed a correlation between amide exchange and hydrogen bonding. These data suggest that other factors, such as complex dynamic behavior and surface burial, may alter the expected exchange rates in globular proteins more than in nonglobular proteins where all of the residues are near the surface.  相似文献   

19.
Recent studies have demonstrated that amides can be used in nickel‐catalyzed reactions that lead to cleavage of the amide C?N bond, with formation of a C?C or C?heteroatom bond. However, the general scope of these methodologies has been restricted to amides where the carbonyl is directly attached to an arene or heteroarene. We now report the nickel‐catalyzed esterification of amides derived from aliphatic carboxylic acids. The transformation requires only a slight excess of the alcohol nucleophile and is tolerant of heterocycles, substrates with epimerizable stereocenters, and sterically congested coupling partners. Moreover, a series of amide competition experiments establish selectivity principles that will aid future synthetic design. These studies overcome a critical limitation of current Ni‐catalyzed amide couplings and are expected to further stimulate the use of amides as synthetic building blocks in C?N bond cleavage processes.  相似文献   

20.
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号