首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ion acceleration driven by a laser pulse at intensity I= 10(20)-10(22) W/cm(2) x (microm/lambda)(2) from a double layer target is investigated with multiparametric particle-in-cell simulations. For targets with a wide range of thickness l and density n(e), at a given intensity, the highest ion energy gain occurs at certain electron areal density of the target sigma = n(e)l, which is proportional to the square root of intensity. In the case of thin targets and optimal laser pulse duration, the ion maximum energy scales as the square root of the laser pulse power. When the radiation pressure of the laser field becomes dominant, the ion maximum energy becomes proportional to the laser pulse energy.  相似文献   

2.
In this paper, a two dimensional Particle In Cell‐Monte Carlo Collision simulation scheme is used to examine the THz generation via the interaction of high intensity ultra‐short laser pulses with an underdense molecular hydrogen plasma slab. The influences of plasma density, laser pulse duration and its intensity on the induced plasma current density and the subsequent effects on the generated THz signal characteristics are studied. It is observed that the induced current density in the plasma medium and THz spectral intensity are increased at the higher laser pulse intensities, laser pulse durations and plasma densities. Moreover, the generated THz electric field amplitude is reduced at the higher laser pulse durations. A wider frequency range for the generated THz signal is shown at the lower laser pulse durations and higher plasma densities. Additionally, it is found that the induced current density in hydrogen plasma medium is the dominant factor influencing the generation of THz pulse radiation. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.  相似文献   

4.
We present evidence suggesting that XeCl laser ablation of a weakly absorbing poly-methyl-methacrylate (PMMA) polymer, done by chemical, thermal bond breaking of the polymer chain or optical breakdown of the material, which involves plasma generation, creates a cloud of small asymmetric near the surface bubbles, which subsequently expand and aggregate during the same laser pulse duration or in subsequent pulses depending on the laser pulse energy. When a critical volume is reached each bubble collapses in a high pressure and temperature central point and rebounds ejecting a hot jet of material on the non-irradiated area of the polymer and creating craters on the surface. A characteristic bipolar pressure wave corresponding to the bubble collapse, explosion and rebound is observed. The number density of the craters on the surface is a function of the laser pulse sequence number and the laser pulse energy density.  相似文献   

5.
A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations.  相似文献   

6.
使用一维辐射流体力学程序MULTI模拟了脉冲CO2激光烧蚀平面锡靶的过程,研究了脉冲宽度、峰值功率密度、靶材初始密度对锡等离子体电子密度、电子温度的时空分布的影响,并结合统计分析得到最有利于产生13.5 nm 极紫外光的激光脉冲宽度。模拟结果表明,脉冲宽度为100~200 ns的长脉冲激光产生的等离子体有利于实现极紫外输出的最佳条件,通过分析等离子体的电子密度、电子温度的分布对这一结论进行了解释。临界电子密度区域有效吸收了脉冲能量,而低密度的羽辉对激光与极紫外辐射的吸收很少。采用长脉冲激光,使得辐射极紫外等离子体持续时间更长,是提高极紫外辐射效率的有效手段。同时模拟还发现,靶材初始密度对等离子体参数的影响不大。  相似文献   

7.
实验研究了高功率纳秒量级激光脉冲在空气中聚焦时的能量透过率随输入激光脉冲能量变化的规律,发现在纳秒激光脉冲聚焦半径相同的情况下,激光脉冲的能量透过率随入射激光脉冲能量的变化可分为三种情况:当入射激光脉冲能量较低时,激光脉冲能量全部通过;当入射激光脉冲能量增大后,激光脉冲的能量透过率由近100%迅速减小;当入射激光脉冲的能量进一步增加时,激光脉冲的能量透过率继续缓慢变小.用临界自由电子密度以及所对应的临界时间点对上述实验现象进行了理论分析得到了如下结论:当自由电子密度未达到临界自由电子密度时,多光子电离过程起主要作用,而当自由电子密度超过临界自由电子密度后,逆韧致吸收过程起主要作用,临界时间点是入射激光脉冲与空气作用过程中自由电子密度达到临界自由电子密度的时刻.入射激光脉冲能量决定了临界时间点在脉冲作用时间上的位置,临界时间点的位置决定了激光脉冲的能量透过率.可以通过测量激光脉冲的能量透过率来计算出临界自由电子密度,从而确定出激光脉冲在空气中聚焦时的能量透过特性. 关键词: 临界自由电子密度 临界时间点 多光子电离 逆韧致吸收  相似文献   

8.
The pulsed Nd:YAG laser is the most commonly used type of solid-state laser in many fields. In material processing, the power density control of a laser beam has been considered to be significant, which depends on the flashlamp current pulse width and pulse repetition rate.In this study, we have proposed a new method of sequential charge and discharge circuit (SCADC) to control the laser power density. The power supply of SCADC is composed of low frequency capacitors instead of very expensive high frequency capacitors. We could find the stability of laser output as well as the flashlamp current up to the pulse repetition rate of 150 pps. As increasing a repetition rate from 30 to 150 pps by the step of 30 pps, it is known that the laser outputs increased by 10 W.  相似文献   

9.
在考虑相对论和有质动力非线性以及全局电量守衡的前提下,分析了强激光在冷等离子体窄通道中稳定传播的情况。采用较为简化的二维理论模型,给出了描述激光和通道横向结构的解,对不同通道宽度、通道密度、激光强度和电磁模式等进行了讨论,分析了其对激光在等离子体通道中传播的影响。分析发现,在存在预通道的情况下,当等离子体通道的密度大于临界密度很多时(例如20倍临界密度),即使是在激光波长量级的通道中,激光仍然可以传播。通道越宽,等离子体密度越小;激光强度越大越容易传播。在同样的通道和传输情况下,TE0模传输所需要的激光强度比TE1模要小。  相似文献   

10.
Femtosecond laser (Ti:sapphire, 100 fs pulse duration) ablation of silicon in air was compared with nanosecond laser (Nd:YAG, 3 ns pulse duration) ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-induced plasmas decreased faster than ns-induced plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions were compared. PACS 52.38.Mf; 52.30.-q  相似文献   

11.
12.
等离子体密度标长对高次谐波转换效率的影响   总被引:1,自引:1,他引:0  
帅斌  李儒新  徐至展 《光学学报》2001,21(11):404-1406
通过等离子体粒子模拟研究了在强激光与等离子体相互作用产生高次谐波的过程中,等离子体密度标长对转换效率的影响,计算了在不同密度标长下p偏振非相对论强度激光与高密度等离子体相互作用产生高次谐波的转换效率,发现等离子体密度标长对转换效率有重要的影响,这种影响与谐波级次,等离子体密度,激光脉冲宽度有关。  相似文献   

13.
All-optical ultrafast time-resolved plasma diagnostics of plasma-based accelerators (PBA's) are described, with emphasis on the laser wakefield accelerator (LWFA). Specifically, the diagnostic techniques involve replacing the trailing particle bunch in the LWFA with a trailing photon bunch: a weak ultrashort laser pulse. Since this photon pulse is derived directly from the intense pump pulse, practical difficulties such as synchronization and dephasing are eliminated. The interaction of the photon bunch with the plasma wake is essentially a simple time-domain shift in optical phase, which can produce both “DC” phase shifts and frequency blue/red-shifting of the probe pulse spectrum. These phase/frequency shifts are recorded in frequency domain interferograms, which are formally equivalent to time-domain holograms. Experimental results of longitudinal plasma density profiling are presented in which plasma density oscillations (Langmuir waves) in the wake of an intense (Ipeak~3×10 17 W/cm2) laser pulse (~100 fs) were measured with ultrafast time resolution. Phase shifts consistent with large amplitude (~80%) density oscillations at the electron plasma frequency were observed in a fully tunnel-ionized He plasma, corresponding to longitudinal electric fields of ~10 GV/m. Strong radial ponderomotive forces enhance the density oscillations. Finally, proposed single-shot schemes for simultaneous transverse and longitudinal profiling are discussed  相似文献   

14.
By solving the quantum Vlasov equation, electron positron pair production in a strong electric field with asymmetric laser pulses has been investigated. We consider three different situations of subcycle, cycle and supercycle laser pulses. It is found that in asymmetric laser pulse field, i.e.. when the pulse length of one rising or falling side is fixed while the pulse length of the other side is changed, the pair production rate and mnnber density can be significantly modified comparable to symmetric situation. For each ca,se of these three different cycle pulses, when one side pulse length is constant and the other side pulse length becomes shorter, i.e., the whole pulse is compressed, the more pairs can be produced than that in tile vice versa case, i.e., the whole pulse is elongated. In compressed pulse case there exists an optimum pulse length ratio of asylnmetric pulse lengths which makes the pair number density maximunn. Moreover, the created maximum pair number density by subcycle pulse is larger than that by cycle or/and supercycle pulse. In elongated pulse case, however, only for supercycle laser pulse the created pairs is enhanced and there exists also an optimum asymmetric pulse length ratio that maximizes the pair number density. On the other hand. surprisingly, in both cases of subcycle and cycle elongated laser pulses, the pair number density is monotonically decreasing as the asymmetry of pulse increases.  相似文献   

15.
In a plasma wake wave generated by a high power laser, modulations of the electron density take the shape of paraboloidal dense shells, moving almost at the speed of light. A counterpropagating laser pulse is partially reflected from the shells, acting as relativistic flying mirrors, producing a time-compressed frequency-multiplied pulse due to the double Doppler effect. The counterpropagating laser pulse reflection from the plasma wake wave accompanied by its frequency multiplication (with a factor from 50 to 114) was detected in our experiment.  相似文献   

16.
High power femtosecond pulses in the Vacuum Ultra Violet (VUV) have been generated through the nonlinear interaction of femtosecond KrF pulses with xenon and argon gas. Under near resonant two photon excitation of xenon by a femtosecond KrF laser, parametric four wave mixing processes lead to VUV pulses at 147 and 108 nm with pulse energies in the 10 µJ range. Tuning is demonstrated by mixing the KrF pulse with a 500 fs dye laser pulse at 497 nm, resulting in 165 nm emission. In argon, a three photon resonance leads to third harmonic generation at 83 nm and micro joule level pulses near 127 nm generated by a six wave mixing process. Since the spectra of the VUV pulses show an ionization-induced blue shift with increasing KrF laser intensity, the VUV pulses can be shown to have temporal duration less than the pulse width (450 fs) of the KrF laser. Blue shifting of the third harmonic of the KrF laser in argon is dominated by a reduction in the neutral gas density rather than by an increase in the electron density.  相似文献   

17.
激光脉冲在等离子体中的压缩分裂   总被引:1,自引:0,他引:1       下载免费PDF全文
通过数值求解一维非线性薛定谔方程,研究了圆偏振入射激光脉冲在初始密度范围为1/4到略低于1倍临界密度的等离子体中的自压缩和分裂现象. 提高等离子体密度和入射激光强度以及减小脉冲宽度可以在更短的传输距离获得有效的激光脉冲压缩,压缩后的脉冲半高宽度可达到初始脉冲半高宽度的1/35,甚至更小. 这种压缩是激光脉冲在等离子体中形成高阶孤子的过程中产生的,可以获得比在稀薄等离子体中更好的压缩比例. 数值计算的结果给出了该情况下激光脉冲在等离子体中自压缩后形成的高阶孤子分裂. 利用一维粒子数值模拟程序(particle-in-cell,PIC)也观察到了脉冲的压缩和分裂现象,得到了与数值计算一致的结果. 关键词: 非线性薛定谔方程 自压缩 脉冲分裂 粒子模拟  相似文献   

18.
The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization induced defocusing. The plasma channel with electron density of above 10^13/cm^3 can be formed over 70 m by 50-ps, 20-mJ laser pulses. The fluctuation of laser intensity and electron density inside ultraviolet (UV) plasma channel is significantly lower UV laser by air is considered in the simulation and it the limit of the length of plasma channel. than that of infrared pulse. The linear absorption of is shown that the linear absorption is important for the limit of the length of plasma channel.  相似文献   

19.
《等离子体物理论文集》2017,57(6-7):252-257
We propose a theoretical model for the generation of electromagnetic waves in the terahertz (THz) frequency range by the optical rectification of a Gaussian laser pulse in a plasma with an applied static electric field transverse to the direction of propagation. A Gaussian laser pulse can exert a transverse component of the quasi‐static ponderomotive force on the electrons at a frequency in the THz range by a suitable choice of the laser pulse width. This nonlinear force is responsible for the density oscillation. The coupling of this oscillation with the drift velocity acquired by electrons due to the applied static electric field leads to the generation of a nonlinear current density. A spatial Gaussian intensity profile of the laser beam enhances the generated THz yield by many folds as compared to a uniform spatial intensity profile.  相似文献   

20.
基于电子密度演化模型,借助数值方法,研究了飞秒激光作用下光学薄膜内的电子密度演化过程,讨论了初始电子密度Ni和激光脉冲宽度τ对光学薄膜激光损伤阈值Fth的影响,分析了激光诱导薄膜损伤过程中MPI和AI的性质和作用.研究结果表明,对应于一定的脉宽,存在一个临界初始电子密度,当Ni低于这一临界密度时,Fth不受Ni影响;当Ni高于临界密度时,Fth随Ni增加而降低.临界初始电子密度随着脉宽的减小而增加。对于FS和BBS介质薄膜,Fth随脉宽的增加而升高。初始电子密度Ni对BBS中的MPI和AI基本没有影响;同样Ni对FS中的AI基本不产生影响,但当Ni>1011 cm-3时,FS中MPI电子密度随Ni增加而降低.在所研究的脉宽范围τ∈[0.01,5]ps,AI是FS介质激光诱导损伤的主要机制.而对于BBS,当脉宽τ∈[0.03,5]ps,AI是激光诱导损伤的主要机制;当脉宽τ∈[0.01,0.03]ps,MPI在激光诱导损伤中占主导地位.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号