首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
We report the immobilization and characterization of a spiropyran (SP) derivative (1) on smooth Si(100) and porous H-terminated silicon surfaces through a thermal hydrosilylation protocol. Under visible light exposure the SP is in a closed, hydrophobic form, whereas under UV irradiation it converts to a polar, hydrophilic open form named merocyanine (MC). The SP-MC photoinduced isomerization gives a small contact angle (CA) change of 9 degrees for smooth Si(100) samples under sequential irradiation cycles with white and UV light. Irradiation of porous silicon (PS) surfaces, under the same conditions, gave a CA change of 11 degrees. Treatment of PS surfaces, bearing the MC form of chromophore 1, with cobalt(II) ions enhances the wettability switching of the PS surface to a much larger extent, giving rise to a CA variation as high as 32 degrees.  相似文献   

2.
The wetting characteristics of surfaces of polymers doped with photochromic spiropyran molecules can be tuned when irradiated with laser beams of properly chosen photon energy. The hydrophilicity is enhanced upon UV laser irradiation since the embedded nonpolar spiropyran molecules convert to their polar merocyanine isomers. The process is reversed upon green laser irradiation. Structuring of the photochromic polymeric surfaces with soft lithography enhances significantly the hydrophobicity of the system, indicating that the water droplets on the patterned features interact with air that is trapped in the microcavities, thus creating superhydrophobic air-water contact areas. Furthermore, the light-induced wettability variations of the structured surfaces are enhanced by a factor of 3 compared to those on the flat surfaces. This significant enhancement is attributed to the photoinduced reversible volume changes to the imprinted gratings, which additionally contribute to the wettability changes due to the light-induced photochromic interconversions.  相似文献   

3.
We present the synthesis of reactive polymer brushes prepared by surface reversible addition–fragmentation chain transfer polymerization of pentafluorophenyl acrylate. The reactive ester moieties can be used to functionalize the polymer brush film with virtually any functionality by simple post‐polymerization modification with amines. Dithiobenzoic acid benzyl‐(4‐ethyltrimethoxylsilyl) ester was used as the surface chain transfer agent (S‐CTA) and the anchoring group onto the silicon substrates. Reactive polymer brushes with adjustable molecular weight, high grafting density, and conformal coverage through the grafting‐from approach were obtained. Subsequently, the reactive polymer brushes were converted with amino‐spiropyrans resulting in reversible light‐responsive polymer brush films. The wetting behavior could be altered by irradiation with ultraviolet (UV) or visible light. Furthermore, a patterned surface of polymer brushes was obtained using a lithography technique. UV irradiation of the S‐CTA‐modified substrates leads to a selective degradation of S‐CTA in the exposed areas and gives patterned activated polymer brushes after a subsequent RAFT polymerization step. Conversion of the patterned polymer brushes with 5‐((2‐aminoethyl)amino)naphthalene‐1‐sulfonic acid resulted in patterned fluorescent polymer brush films. The utilization of reactive polymer brushes offers an easy approach in the fabrication of highly functional brushes, even for functionalities whose introduction is limited by other strategies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
We report on a new type of liquid crystalline cellulosic films with light controllable reversible wettability. The films are prepared from a thermotropic cellulose derivative functionalized with azo-containing groups. These groups exhibit dynamic changes in interfacial properties in response to UV irradiation. The UV irradiation induces trans-to-cis isomerization in the azobenzene moiety, which causes a conformational change in the upper molecular layers of the thin films. These changes originate a hydrophobic to comparatively hydrophilic transformation of the surface. The reversible wettability of the surface results from the cis/trans photo and thermal isomerization. The UV-vis absorption spectra, as well as contact angle measurements with UV irradiation, clearly support the understanding of the phenomenon. This type of surface design enables the amplification of molecular level conformational transitions to macroscopic changes in interface properties using the means of isomerism. This opens new opportunities in surface engineering using eco-friendly cellulose manipulation.  相似文献   

5.
An electroactive nitrospiropyran-substituted polyterthiophene, poly(2-(3,3'-dimethylindoline-6'-nitrobenzospiropyranyl)ethyl 4,4'-didecyloxy-2,2':5',2'-terthiophene-3'-acetate), has been synthesized for the first time. The spiropyran, incorporated into the polymer backbone by covalent attachment to the alkoxyterthiophene monomer units, leads to multiple colored states as a result of both photochemical and electrochemical isomerization of the spiropyran moiety to merocyanine forms as well as electrochemical oxidation of the polyterthiophene backbone and the merocyanine substituents. While electrochemical polymerization of the terthiophene monomer can take place without oxidation of the spiropyran, increasing the oxidation potential leads to complex electrochemistry that clearly involves this substituent. To understand this complex behavior, the first detailed electrochemical study of the oxidation of the precursor spiropyran, 1-(2-hydroxyethyl)-3,3-dimethylindoline-6'-nitrobenzospiropyran, was undertaken, showing that, in solution, an irreversible electrochemical oxidation of the spiropyran occurs leading to reversible redox behavior of at least two merocyanine isomers. With these insights, an extensive electrochemical and spectroelectrochemical study of the nitrospiropyran-substituted polyterthiophene films reveals an initial irreversible electrochemical oxidative ring-opening of the spiropyran to oxidized merocyanine. Subsequent reduction and cyclic voltammetry of the resulting nitromerocyanine-substituted polyterthiophene film gives rise to the formation of both merocyanine π-dimers or oligomers and π-radical cation dimers, between polymer chains. Although merocyanine formation is not electrochemically reversible, the spiropyran can be photochemically regenerated, through irradiation with visible light. Subsequent electrochemical oxidation of the nitrospiropyran-substituted polymer reduces the efficiency of the spiropyran to merocyanine isomerization, providing electrochemical control over the polymer properties. SEM and AFM images support the conclusion that the bulky spiropyran substituent is electrochemically isomerized to the planar merocyanine moiety, affording a smoother polymer film. The conductivity of the freestanding polymer film was found to be 0.4 S cm(-1).  相似文献   

6.
Perfluorocarbon thin films and polymer brushes were formed on stainless steel 316 L (SS316L) to control the surface properties of the metal oxide. Substrates modified with the films were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), contact angle analysis, atomic force microscopy (AFM), and cyclic voltammetry (CV). Perfluorooctadecanoic acid (PFOA) was used to form thin films by self-assembly on the surface of SS316L. Polypentafluorostyrene (PFS) polymer brushes were formed by surface-initiated polymerization using SAMs of 16-phosphonohexadecanoic acid (COOH-PA) as the base. PFOA and PFS were effective in significantly reducing the surface energy and thus the interfacial wetting properties of SS316L. The SS316L control exhibited a surface energy of 38 mN/m compared to PFOA and PFS modifications, which had surface energies of 22 and 24 mN/m, respectively. PFOA thin films were more effective in reducing the surface energy of the SS316L compared to PFS polymer brushes. This is attributed to the ordered PFOA film presenting aligned CF(3) terminal groups. However, PFS polymer brushes were more effective in providing corrosion protection. These low-energy surfaces could be used to provide a hydrophobic barrier that inhibits the corrosion of the SS316L metal oxide surface.  相似文献   

7.
Photocontrolled surface‐initiated reversible complexation mediated polymerization (photo‐SI‐RCMP) was successfully applied to fabricate concentrated polymer brushes with complex patterning structures. Positive‐type patterned polymer brushes were obtained by photo‐SI‐RCMP under visible light (550(±50) nm) using photomasks. A particularly interesting finding was that negative‐type patterned polymer brushes were also obtainable in a facile manner. A nonspecial UV light (250–385 nm) enabled the preparation of pre‐patterned initiator surfaces in a remarkably short time (1 min), leading to negative‐type patterned polymer brushes. Based on this unique selectivity between visible and UV light, the combination of two patterning techniques enabled the preparation of complex patterned brushes, including diblock copolymers, binary polymers, and functional binary polymers, without multistep immobilization of one or more initiators on the surfaces.  相似文献   

8.
Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
In view of the current living micro-environment and requirements of green economy, intelligent light-responsive humidification materials have become a hot spot in intelligent polymer mate-rials. In this work, reversible photoresponsive films with a mechanical stability and an excellent humidity adjustment performance are developed by modifying epoxy-ether-spiropyran(EPESP) on amino-nanofibers(PAN-NH2), which was produced through electrospinning. Such smart films for regulating wettability and micro-environment humidity can be reversibly manipulated by the simple switch of UV and visible light irradiation because of the unique transformation between polar ring-opened status and nonpolar ring-closed status of the spiropyran units. The effects of EPESP modification amount on the morphology, wettability, tensile strength and the ability to regulate humidity were investigated in detail. The results show that with the increase of modification amount of EPESP, both the humi-dity regulation and tensile strength increased; when the modification amount exceeds 7 mg, the range of regulating humidity increases slowly.  相似文献   

10.
Photochromic coatings immobilized on the surface of polyarylate films are prepared on the basis of fulgimides, oligosiloxanes, and oligosilazanes. The irradiation of coatings with UV light at a wavelength of @380 nm and visible light at a wavelength above 500 nm results in photoinduced reversible transitions between open and colored cyclic forms. Photochromic polymer films with the most acceptable characteristics are obtained from fulgimide-containing oligoaminosiloxane and oligovinyldimethylsilazane. It is found that the photosensitivity of these films is higher than that of similar films based on 1,2-dihetarylethenes.  相似文献   

11.
Polyethylene films were prepared with phase separation at lower temperatures. The wettability of such films varied from hydrophobicity to superhydrophobicity as the processing temperature decreased owing to the increase of surface roughness. Storing the as-prepared films at subzero temperature (-15 °C), it was found that the water contact angle of the film decreased obviously, and the decrease depended on the corresponding roughness. Further keeping the as-prepared films at room temperature for 30 min, the water contact angle would return to the normal value, which indicated that the reversible switching of surface wettability can be controlled by the environmental temperature.  相似文献   

12.
Reversible and irreversible photoinduced changes in surface wettability were observed in noncovalently assembled multilayered films. The multilayered films studied were fabricated from a self-assembled monolayer (SAM) consisting of 4-(10-mercaptodecyloxy)pyridine-2,6-dicarboxylic acid on gold, Cu(II) ions complexed to the pyridine head group of the SAM, and either cis- (film 1) or trans- (film 2) stilbene-4,4'-dicarboxylic acid complexed to the Cu(II) ions. Irradiation of film 1 at wavelengths corresponding to the absorption band of the cis-stilbene isomer resulted in an irreversible chemical change and an irreversible increase in wettability, as indicated by surface contact angle and grazing incidence IR measurements. However, no evidence for cis-/trans-photoisomerization was observed. Films 3 and 4, similar to films 1 and 2 in that they consist of an underlying SAM, an intermediate layer consisting of Cu(II) ions, and either cis- or trans-stilbene-4,4'-dicarboxylic acid as the capping ligand, were fabricated with a mixed SAM that contained both 4-(10-mercaptodecyloxy)pyridine-2,6-dicarboxylic acid and 4-tert-butylbenzenethiol. Irradiation of these films at wavelengths corresponding to stilbene isomer absorption bands resulted in reversible cis- to trans- (film 3) and trans- to cis- (film 4) photoisomerization and reversible switching of the surface wettability between a low wetting state (cis-stilbene) and a high wetting state (trans-stilbene). The difference in observed behavior between films 1 and 2 and films 3 and 4 is attributed to the greater surface spacing afforded by the mixed monolayer, which allows greater conformational flexibility and lowers the steric barriers to isomerization.  相似文献   

13.
Polystyrene-poly(acrylic acid) (PS-PAA) block copolymers polymerized by atom transfer radical polymerization were covalently grafted to both smooth and microtextured surfaces. These amphiphilic copolymers were utilized to create smart surfaces, which can be responsive to external stimuli, e.g., pH values or organic solvent. Atom force microscopy, field emission scanning electron microscopy, and contact angle measurements were employed to investigate the physiochemical features of the copolymer brushes. It was found that the wettability of surfaces depended on both the PS/PAA molar ratio and external solvent properties. Hydrophilic surfaces were obtained after treatment with basic solution, as well as a polar solvent, such as ethanol. With treatment with acidic solution or toluene, the surface could be reversibly turned relatively hydrophobic, probably due to the rearrangement or reorganization of polymer chains. Moreover, rougher surfaces, which were microtextured by ZnO nanorods, were incorporated into this adaptive system to enhance the tunable range of wettability.  相似文献   

14.
We report a facile approach to preparing binary mixed polymer brushes and free-standing films by combining the layer-by-layer and surface-initiated polymerization (LbL-SIP) techniques. Specifically, the grafting of mixed polymer brushes of poly(n-isopropylacrylamide) and polystyrene (pNIPAM-pSt) onto LbL-macroinitiator-modified planar substrates is described. Atom transfer radical polymerization (ATRP) and free radical polymerization (FRP) techniques were employed for the syntheses of pNIPAM and pSt, respectively, yielding pNIPAM-pSt mixed polymer brushes. The composition of the two polymers was controlled by varying the number of macroinitiator layers deposited on the substrate (i.e., LbL layers = 4, 8, 12, 16, and 20); consequently, mixed brushes of different thicknesses and composition ratios were obtained. Moreover, the switching behavior of the LbL-mixed brush films as a function of solvent and temperature was demonstrated and evaluated by water contact angle and atomic force microscopy (AFM) experiments. It was found that both the solvent and temperature stimuli responses were a function of the mixed brush composition and thickness ratio where the dominant component played a larger role in the response behavior. Furthermore, the ability to obtain free-standing films was exploited. The LbL technique provided the macroinitiator density variation necessary for the preparation of stable free-standing mixed brush films. Specifically, the free-standing films exhibited the rigidity to withstand changes in the solvent and temperature environment and at the same time were flexible enough to respond accordingly to external stimuli.  相似文献   

15.
将自组装得到的聚苯乙烯胶体晶体,利用反应离子刻蚀和软刻蚀法复形到偶氮苯聚合物膜表面,获得六方非紧密排列的偶氮苯聚合物半球状阵列微图案膜。采用场发射扫描电子显微镜(FESEM)、原子力显微镜(AFM)和接触角测量仪等对膜的微阵列结构和表面润湿性能进行了表征。研究了光照对膜微图案结构和润湿性能的影响。结果表明:基于偶氮苯基团的光致取向特性,偶氮苯聚合物膜的微图案在偏振光照射下,可由初始的半球状阵列微结构形变成纺锤状和椭球状等结构,这种微结构的改变可以改变膜表面润湿性,实现偶氮苯聚合物膜表面不同微图案和润湿性能的光照调控。  相似文献   

16.
The synthesis of polyaniline (PANI) with semiconducting layered niobate (NbO) to form PANI/NbO hybrid materials and their reversible color change under a unique redox process under the influence of UV and/or visible light have been investigated. The in-situ polymerization of anilinium chlorides (ANI) packed in a regular orientation in a bilayer structure within the NbO interlayers led to PANI/NbO hybrid powders by heat treatment using (NH(4))(2)S(2)O(8) as the catalyst. The resulting PANI of these hybrids showed the characteristics of a fully oxidized quinoid form, i.e., pernigranine (PG). The PANI/NbO suspension in H(2)O was cast on a glass substrate to form a PANI/NbO film after evaporation of the water with a good parallel orientation of the NbO layers against the glass substrate. Upon UV light irradiation in the presence of a reductant such as MeOH, the violet-colored PANI (PG) polymers within the NbO interlayers were reduced by the NbO-induced photocatalytic reactions and led to a colorless PANI, i.e., leucoemeraldine (LE). Moreover, the resulting colorless PANI/NbO films reverted back to a blue-colored PANI, i.e., emeraldine (EM), due to oxidation by the surrounding O(2) gas. The PANI/NbO hybrid films were able to retain repetitive and reversible photoinduced patterning for over 50 cycles under such alternate UV and visible light irradiation.  相似文献   

17.
Feng  ZHOU  Shu  Juan  LIU 《中国化学快报》2003,14(1):47-50
End grafted polyacrylonitrile (PAN) brush was prepared through surface initiated polymerization via the chain transfer process.The thiol-terminated monolayer and PAN brushes were characterized by FTIR,X-ray photoelectron spectroscopy(XPS),atomic force microscopy (AFM),ellipsometry and contact angle measurements etc.It is demonstrated that radical chain transfer reaction and surface initiated precipitate polymerization can used to prepare end-grafted polymer brushes.  相似文献   

18.
The 172 nm ultraviolet (UV) excimer light was exposed to polyethylene (PE), polypropylene, poly(ethylene terephthalate) and nylon 6 surfaces in ambient air. Changes in the contact angle and particle deposition in liquid due to UV treatment were investigated from the viewpoints of wettability and detergency. For all polymers, the wettability and the acid-base component of the surface free energy evaluated by the contact angle measurements increased remarkably by UV treatment of 1 min. From surface analyses of the polymer surfaces by X-ray photoelectron spectroscopy and atomic force microscopy, oxygen concentration was found to increase after UV treatment, whereas little topographical change was observed. The deposition of PE and nylon 12 particles onto the polymer surface was examined, in situ, in water, water/ethanol mixture, ethanol and n-heptane. Although the number of deposited particles was largely dependent on the kinds of the particle, the substrate and the liquid, a significant decrease in the deposition due to UV treatment was confirmed in any system.  相似文献   

19.
The synthesis of poly[(oligoethylene glycol) methyl ether acrylate] [poly(OEGA)] brushes was achieved via reversible addition‐fragmentation chain transfer (RAFT) polymerization and used to selectively immobilize streptavidin proteins. Initially, gold surfaces were modified with a trithiocarbonate‐based RAFT chain transfer agent (CTA) by using an ester reaction involving a gold substrate modified with 11‐mercapto‐1‐undecanol and bis(2‐butyric acid)trithiocarbonate. poly(OEGA) brushes were then prepared via RAFT‐mediated polymerization from the surface‐immobilized CTA. The immobilization of CTA on the gold surface and the subsequent polymer formation were followed by ellipsometry, X‐ray photoelectron spectroscopy, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and water contact‐angle measurements. RAFT‐mediated polymerization method gave CTA groups to grafted poly(OEGA) termini, which can be converted to various biofunctional groups. The terminal carboxylic acid groups of poly(OEGA) chains were functionalized with amine‐functionalized biotin units to provide selective attachment points for streptavidin proteins. Fluorescence microscopy measurements confirmed the successful immobilization of streptavidin molecules on the polymer brushes. It is demonstrated that this fabrication method may be successfully applied for specific protein recognition and immobilization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
A catechol-containing macroinitiator has been designed for the surface-initiated atom transfer radical polymerization (SI-ATRP) from various substrates at ambient temperature. Temperature-sensitive poly(N-isopropyl acrylamide) (PNIPAM) brushes were successfully grafted from a range of substrates surfaces, including metals and polyimides, via SI-ATRP using the resulting macroinitiator, which were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements, and atomic force microscopy (AFM). Effects of the temperature response behavior of PNIPAM brushes on the water contact angles and the impedance of the modified surfaces were also exhibited. The self-assembled film of macroinitiator and the resulting polymer brushes were both stable to soaking of basic solvents, and the brushes did not show any exfoliation or delamination even after 2 h of ultrasonic test. The advantages of the macroinitiator in strong interactions with surfaces and high stability and convenience make it possible to modify the native materials with polymer brushes in a convenient and nondestructive way. Importantly, the macroinitiator is compatible with microcontact printing, and patterned polymer brushes on Ti plate were demonstrated by microcontact printing of BrDOPAMA and the following SI-ATRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号