首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a uniform longitudinal magnetic field on the binding energy and photoionization cross-section of a hydrogen-like donor impurity is studied for a semiconductor quantum well-wire approximated by a cylindrical well of finite depth. The selection rules and analytical expressions for the photoionization cross-section are obtained depending on the magnetic field induction, impurity position, and light wave polarization.  相似文献   

2.
The binding energy of laser dressed donor impurity is calculated under the influence of a magnetic field in a quantum well. The binding energy of the ground state of a donor is investigated, within the single band effective mass approximation, variationally for different concentrations at the well centre. The effect of laser and magnetic fields on diamagnetic susceptibility of the hydrogenic donor is reported. The Landau energy levels of electrons in the quantum well as a function of magnetic field are reported. The results show that the diamagnetic susceptibility (i) decreases drastically as intensity of the laser field increases (ii) increases with the magnetic field strength (iii) decreases as the Al-concentration decreases and (iv) a variation of increase in binding energy is observed when non-parabolicity is included and this effect is predominant for narrow wells. Our results are in good agreement with previous investigations for other heterostructures in the presence of laser intensity.  相似文献   

3.
The effect of a longitudinal magnetic and a transverse electric fields on the binding energy of a hydrogen-like donor impurity is studied for a semiconductor quantum well-wire approximated by a cylindrical well of finite depth. It is shown that the magnetic and electric fields as well as the impurity distance from the wire axis are the effective tools for the influence on the binding energy.  相似文献   

4.
Binding energies and diamagnetic susceptibility of an impurity in a spherical GaAs quantum dot under the simultaneous influence of static pressure, temperature and laser radiation are investigated. Pressure- and temperature-dependent dressed potential which is produced by the combined effects of laser radiation and impurity considerably change the energy spectrum and diamagnetic susceptibility of the system. It is shown that binding energies and diamagnetic susceptibility increase with increasing pressure. Moreover, laser radiation effects on the diamagnetic susceptibility are not significant in comparison with its effects on the binding energy.  相似文献   

5.
The binding energies of a hydrogenic donor in a GaN/AlGaN quantum dot are calculated in the influence of magnetic field. The calculations are carried out using the single-band effective mass approximation within a variational scheme. The magnetic field induced binding energy and diamagnetic susceptibility of the hydrogenic donor are obtained as a function of dot radius. Calculations have been carried out with and without the Zeeman effect through the energy-dependent effective mass. The diamagnetic shift of the hydrogenic donor is found for different dot radii. Our results show that (i) the binding energy is higher for smaller dot radii and the magnetic field effects are predominant for larger dot sizes, (ii) the binding energy is higher when the Zeeman effect is included for all the magnetic fields, (iii) the diamagnetic susceptibility increases with the magnetic field and is not pronounced for smaller dot radii and (iv) the diamagnetic shift has a good influence of larger dot radii.  相似文献   

6.
Based on the effective mass approximation, the magnetic and thermal properties of parabolic GaAs quantum dot have been investigated in the presence of Rashba Spin-Orbit interaction (RSOI), donor impurity and applied magnetic and electric fields. The exact diagonalization method has been used to solve the Hamiltonian of an electron confined in a quantum dot (QD) and obtain the eigenenergies and the binding energy of the donor impurity as a function of various QD physical parameters. We have shown the dependence of the average statistical energy, magnetization, magnetic susceptibility and heat capacity of the donor impurity in the QD on: the Rashba interaction parameter, the magnetic and electric fields, confining frequency, and temperature. The results reveal that these parameters can tune the magnetic properties of the GaAs quantum dot and flip the sign of magnetic susceptibility from negative (diamagnetic) to positive (paramagnetic) type material.  相似文献   

7.
The binding energy and diamagnetic susceptibility of an on-center hydrogenic donor impurity in an InAs spherical quantum dot placed at the center of a GaAs cylindrical nano-wire have been investigated using finite element method in the framework of the effective mass approximation. The binding energy and diamagnetic susceptibility are calculated as a function of the dot radius, nano-wire radius and nano-wire height. The results show that as the dot radius increases (I) for a dot radius smaller than some critical value, the effect of the spherical confinement on the energy levels becomes negligible and the energies remain constant, for a dot radius larger than some specific value, the energy levels decrease (II) the ground and the first excited state binding energies increase, reach a maximum and then decrease (III) the ground state diamagnetic susceptibility increases, reach a maximum and then decreases (IV) the first excited state diamagnetic susceptibility increases, indicating two maxima and then decreases. The effects of the nano-wire dimensions on the binding energy and diamagnetic susceptibility have also been studied. We found that the binding energy and diamagnetic susceptibility decrease reach a minimum value and then increase as the nano-wire radius increases. Finally we found that as the height of the nano-wire increases the ground state binding energy decreases, reaches a minimum value and then increases but the first excited state binding energy decreases and reaches a constant value.  相似文献   

8.
Electric field, hydrostatic pressure and conduction band non-parabolicity effects on the binding energies of the lower-lying states and the diamagnetic susceptibility of an on-center hydrogenic impurity confined in a typical GaAs/AlxGa1−xAs spherical quantum dot is theoretically investigated, by direct diagonalization of the Hamiltonian. To this end, the effect of band non-parabolicity has been performed, by means of the Luttinger-Kohn effective mass equation. Binding energies and diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot size, external electric field strength and hydrostatic pressure, with considering the edge-band non-parabolicity. Results show that the external electric field and the hydrostatic pressure have an obvious influence on the binding energies and the diamagnetic susceptibility of the impurity.  相似文献   

9.
Within the effective-mass approximation, we have investigated the binding energies of donor impurities as a function of the wire dimensions and the photoionization cross-section for a hydrogenic donor impurity placed on the center of the quantum well-wire as a function of the normalized photon energy in the GaAs, Ge and Si quantum wires with infinite barriers. The calculations are performed by the variational method based on a two-parametric trial wave function. The results show that the impurity binding energy and the photoionization cross-section depend strongly on both wire dimensions and material parameters.  相似文献   

10.
《Current Applied Physics》2010,10(5):1354-1359
The diamagnetic susceptibility of the hydrogenic impurity in coaxial quantum well wires under high frequency laser field has been investigated taking into account the laser dressing effect on both the impurity Coulomb potential and confinement potential. The analysis revealed that a laser beam which is linearly polarized along the wire radial direction destroys the cylindrical symmetry of the donor Hamiltonian, leading to a strong dependence of the electron probability density on the laser field amplitude and orientation of the applied magnetic field. Thus, the direction of the magnetic field can be used as a tunable parameter in the variation of the diamagnetic susceptibility in low-dimensional structures under intense laser radiation. This phenomenon gives an additional degree of freedom in device applications.  相似文献   

11.
Simultaneous effects of conduction band non-parabolicity and hydrostatic pressure on the binding energies of 1S, 2S, and 2P states along with diamagnetic susceptibility of an on-center hydrogenic impurity confined in typical GaAs/AlxGa1-xAs spherical quantum dots are theoretically investigated using the matrix diagonalization method. In this regard, the effect of band non-parabolicity has been performed using the Luttinger-Kohn effective mass equation. The binding energies and the diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot radius and different values of the pressure in the presence of conduction band non-parabolicity effect. The results we arrived at are as follows: the incorporation of the band edge non-parabolicity increases the binding energies and decreases the absolute value of the diamagnetic susceptibility for a given pressure and radius; the binding energies increase and the magnitude of the diamagnetic susceptibility reduces with increasing pressure.  相似文献   

12.
The effects of external electric and magnetic fields on the ground state binding energy of hydrogenic donor impurity are compared in square, V-shaped, and parabolic quantum wells. With the effective-mass envelope-function approximation theory, the ground state binding energies of hydrogenic donor impurity in InGaAsP/InP QWs are calculated through the plane wave basis method. The results indicate that as the quantum well width increases, the binding energy changes most fast in SQW. When the well width is fixed, the binding energy is the largest in VQW for the donor impurity located near the center of QWs. For the smaller and larger well width, the electric field effect on binding energy is the most significant in VQW and SQW, respectively. The magnetic field effect on binding energy is the most significant in VQW. The combined effects of electric and magnetic fields on the binding energy of hydrogenic donor impurity are qualitative consistent in different shaped QWs.  相似文献   

13.
The effect of temperature and pressure, simultaneously, on the diamagnetic susceptibility and binding energy of a hydrogenic donor impurity at the center of a GaAs/Ga1−xAlxAs quantum antidot is studied within the effective mass approximation. For this goal, we first analytically solve the Schrödinger equation to obtain wavefunctions and energy levels. Then, using the electronic states, we can calculate the diamagnetic susceptibility. The results obtained from the present work reveals that (i) the diamagnetic susceptibility increases with increasing pressure, (ii) the diamagnetic susceptibility decreases by increasing temperature, (iii) the value of 〈r2〉 decreases with increasing pressure due to the quantum confinement, and (iv) an increase in the pressure enhances the binding energy for a constant temperature.  相似文献   

14.
The magnetic field induced transition energies between the ground and excited states of a donor impurity in a Ga1-xAlxAs /Ga1-yAlyAs corrugated quantum well is reported. The calculations are performed by the variational method based on a two-parametric trial wave function, in the framework of the single band effective mass approximation. The effect of nonparabolicity of the conduction band is considered through the energy dependent effective mass. The effect of magnetic field on the spin-orbit interaction on the electron magnetization and the magnetic susceptibility is discussed. The diamagnetic susceptibility using Hellmann-Feynman theorem is calculated for the ground and excited states of the donor. The transition lines lie in the optical range for a strong magnetic field. The results are compared with the other existing available literature.  相似文献   

15.
The combined effects of hydrostatic pressure and temperature on donor impurity binding energy in GaAs/Ga0.7Al0.3As double quantum well in the presence of the electric and magnetic fields which are applied along the growth direction have been studied by using a variational technique within the effective-mass approximation. The results show that an increment in temperature results in a decrement in donor impurity binding energy while an increment in the pressure for the same temperature enhances the binding energy and the pressure effects on donor binding energy are lower than those due to the magnetic field.  相似文献   

16.
抛物量子点中强耦合束缚极化子的光学声子平均数   总被引:3,自引:4,他引:3  
采用线性组合算符和幺正变换方法研究了在库仑场束缚下抛物量子点中强耦合束缚极化子的振动频率和光学声子平均数,并对其进行了数值计算。结果表明:强耦合束缚极化子的振动频率和光学声子平均数随量子点的有效受限长度的增加而减小,随电子-LO声子耦合强度的增强而增加,束缚极化子的振动频率随库仑势的增加而减小。  相似文献   

17.
We propose a coaxial cylindrical quantum well wire (QWW) system, in which two conducting cylindrical layers are separated by an insulating layer. The ground state binding energy of a hydrogenic impurity subjected to uniform magnetic field applied parallel to the wire axis is studied within a variational scheme as a function of the inner barrier thickness for two different impurity positions and various barrier potentials. The ground state energy and wave function in the presence of a magnetic field is directly calculated using the fourth-order Runge–Kutta method. It is found that the binding energy in critical barrier thickness shows a sharp increase or decrease depending on the impurity position and magnetic field strength. The main result is that a sharp variation in the binding energy, which may be important in device applications, depends strongly not only on the location of the impurity but also on the magnetic field and the geometry of the wire.  相似文献   

18.
We consider the effects of electric and magnetic fields as well as of hydrostatic pressure on the donor binding energy in InAs Pöschl-Teller quantum rings. The ground state energy and the electron wave function are calculated within the effective mass and parabolic band approximations, using the variational method. The binding energy dependencies on the electric field strength and the hydrostatic pressure are reported for different values of quantum ring size and shape, the parameters of the Pöschl-Teller confining potential, and the magnetic field induction. The results show that the binding energy is an increasing or decreasing function of the electric field, depending on the chosen parameters of the confining potential. Also, we have observed that the binding energy is an increasing/decreasing function of hydrostatic pressure/magnetic field induction. Likewise, the impurity binding energy behaves as an increasing/decreasing function of the inner/outer radii of the quantum ring nanostructure.  相似文献   

19.
张红  王学  赵剑锋  刘建军 《中国物理 B》2011,20(12):127301-127301
The binding energy of a hydrogenic impurity in self-assembled double quantum dots is calculated via the finite-difference method. The variation in binding energy with donor position, structure parameters and external magnetic field is studied in detail. The results found are: (i) the binding energy has a complex behaviour due to coupling between the two dots; (ii) the binding energy is much larger when the donor is placed in the centre of one dot than in other positions; and (iii) the external magnetic field has different effects on the binding energy for different quantum-dot sizes or lateral confinements.  相似文献   

20.
抛物量子点中强耦合束缚磁极化子的声子平均数   总被引:13,自引:6,他引:7  
采用线性组合算符和幺正变换方法导出了强耦合束缚磁极化子的振动频率和声子平均数。讨论了量子点的有效受限长度、磁场、库仑场和电子-LO声子耦合强度对抛物量子点中强耦合束缚磁极化子振动频率和声子平均数的影响。数值计算结果表明:强耦合束缚磁极化子的振动频率和声子平均数均随量子点的有效受限长度、回旋共振频率的增加而减小,随库仑束缚势的增加而增加,声子平均数随电子-LO声子耦合强度增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号