首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DDT (1,1,1‐trichloro‐2,2‐bis(4‐chlorophenyl)ethane), a contact insecticide with a rich and controversial history since its activity was discovered in 1939, has long been thought to be monomorphic. Herein we report the discovery and characterization of a second polymorph, designated Form II, which can be isolated as single crystals, but converts very slowly at room temperature to the form reported previously, now designated as Form I. Computations based on an evolutionary algorithm for crystal structure prediction revealed that Forms I and II are among the four lowest energy crystal structures of fifty calculated. A preliminary study of the contact insecticidal activity toward fruit flies (Drosophila melanogaster) indicates that Form II is more active, suggesting opportunities for more effective solid‐state formulations that would allow reduced amounts of DDT, thereby minimizing environmental impact.  相似文献   

2.
Effect of hydrostatic pressure on the two (I – monoclinic and II – orthorhombic) polymorphs of paracetamol was studied by X-ray diffraction in the diamond anvil cell at pressures up to 4.5 GPa (for the monoclinic form) and up to 5.5 GPa (for the orthorhombic form). The two groups of phenomena were studied: (i) the anisotropic structural distortion of the same polymorph, (ii) transitions between the polymorphs induced by pressure. The anisotropy of structural distortion of polymorphs I and II was well reproducible from sample to sample, also from powder samples to single crystals. The bulk compressibility of the two forms was shown to be practically the same. However, a noticeable qualitative difference in the anisotropy of structural distortion was observed: with increasing pressure the structure of polymorph II contracted in all the directions showing isotropic compression in the planes of hydrogen-bonded molecular layers, whereas the layers in the structure of the polymorph I expanded in some directions. Maximum compression in both polymorphs I and II was observed in the directions normal to the molecular layers. The transitions between the polymorphs induced by pressure were poorly reproducible and depended strongly on the sample and on the procedure of increasing/decreasing pressure. No phase transitions were induced in the single crystals of the monoclinic polymorph at pressures at least up to 4GPa, although a partial transformation of polymorph I into polymorph II was observed at increased pressure in powder samples. Polymorph II transformed partly into the polymorph I during grinding. The transformation could be hindered if grinding was carried out in CCl4. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
A new polymorph (denoted polymorph II) of 3‐acetyl‐4‐hydroxy‐2H‐chromen‐2‐one, C11H8O4, was obtained unexpectedly during an attempt to recrystallize the compound from salt–melted ice, and the structure is compared with that of the original polymorph (denoted polymorph I) [Lyssenko & Antipin (2001). Russ. Chem. Bull. 50 , 418–431]. Strong intramolecular O—H...O hydrogen bonds are observed equally in the two polymorphs [O...O = 2.4263 (13) Å in polymorph II and 2.442 (1) Å in polymorph I], with a slight delocalization of the hydroxy H atom towards the ketonic O atom in polymorph II [H...O = 1.32 (2) Å in polymorph II and 1.45 (3) Å in polymorph I]. In both crystal structures, the packing of the molecules is dominated and stabilized by weak intermolecular C—H...O hydrogen bonds. Additional π–π stacking interactions between the keto–enol hydrogen‐bonded rings stabilize polymorph I [the centres are separated by 3.28 (1) Å], while polymorph II is stabilized by interactions between α‐pyrone rings, which are parallel to one another and separated by 3.670 (5) Å.  相似文献   

4.
Co-crystals of 4-hydroxybenzoic acid and 2,3,5,6-tetramethylpyrazine (2 : 1) exhibit the first supramolecular synthon polymorphism in a co-crystal; metastable anti-hierarchic polymorph I converts to stable hierarchic form II.  相似文献   

5.
Two polymorphs of safinamide {systematic name: (2S)‐2‐[4‐(3‐fluorobenzyloxy)benzylamino]propionamide}, C17H19FN2O2, a potent selective and reversible monoamine oxidase B (MAO‐B) inhibitor, are described. Both forms are orthorhombic and regarded as conformational polymorphs due to the differences in the orientation of the 3‐fluorobenzyloxy and propanamide groups. Both structures pack with layers in the ac plane. In polymorph (I), the layers have discrete wide and narrow regions which are complementary when located next to adjacent layers. In polymorph (II), the layer has long flanges protruding from each side, which interdigitate when packed with the adjacent layers. N—H...O hydrogen bonds are present in both structures, whereas N—H...F hydrogen bonding is seen in polymorph (I), while N—H...N hydrogen bonding is seen in polymorph (II).  相似文献   

6.
After reporting the structure of a new polymorph of 1,3,5‐trifluoro‐2,4,6‐triiodobenzene (denoted BzF3I3 ), C6F3I3, (I), which crystallized in the space group P 21/c , we perform a comparative analysis with the already reported P 21/n polymorph, (II) [Reddy et al. (2006). Chem. Eur. J. 12 , 2222–2234]. In polymorph (II), type‐II I…I halogen bonds and I…π interactions connect molecules in such a way that a three‐dimensional structure is formed; however, the way in which molecules are connected in polymorph (I), through type‐II I…I halogen bonds and π–π interactions, gives rise to an exfoldable lamellar structure, which looks less tightly bound than that of (II). In agreement with this structural observation, both the melting point and the melting enthalpy of (I) are lower than those of (II).  相似文献   

7.
The solid‐state structure of the amino acid phenylalanine (Phe) offers a potential key to understanding the behavior of a large class of important aromatic compounds. Obtaining good single crystals is, however, notoriously difficult. The structure of the common polymorph of Phe, form I, was first reported by Weissbuch et al. (as D ‐Phe) in 1990, but the correctness of the published C2 unit cell with two disordered molecules in the asymmetric unit was later questioned and other space groups suggested. The identity of form I of L ‐Phe is here established to be P21 with Z′=4, based on data from a well‐diffracting single crystal grown from an acetic acid solution of the amino acid. A second new polymorph, form IV, together with the two recently described forms II and III provide unprecedented information on the structural complexity of this essential amino acid. It is furthermore documented that the racemate, dl ‐Phe, does not grow proper single crystals.  相似文献   

8.
A new polymorph of bis(2‐aminopyridinium) fumarate–fumaric acid (1/1), 2C5H7N2+·C4H2O42−·C4H4O4, was obtained and its crystal structure determined by powder X‐ray diffraction. The new polymorph (form II) crystallizes in the triclinic system (space group P), while the previous reported polymorph [form I; Ballabh, Trivedi, Dastidar & Suresh (2002). CrystEngComm, 4 , 135–142; Büyükgüngör, Odabaşoğlu, Albayrak & Lönnecke (2004). Acta Cryst. C 60 , o470–o472] is monoclinic (space group P21/c). In both forms I and II, the asymmetric unit consists of one 2‐aminopyridinium cation, half a fumaric acid molecule and half a fumarate dianion. The fumarate dianion is involved in hydrogen bonding with two neighbouring 2‐aminopyridinium cations to form a hydrogen‐bonded trimer in both forms. In form II, the hydrogen‐bonded trimers are interlinked across centres of inversion via pairs of N—H...O hydrogen bonds, whereas such trimers are joined via single N—H...O hydrogen bonds in form I, leading to different packing modes for forms I and II. The results demonstrate the relevance and application of the powder diffraction method in the study of polymorphism of organic molecular materials.  相似文献   

9.
The lupane triterpenoid betulonic aldehyde [also known as betulonal; systematic name: lup‐20(29)‐en‐28‐al‐3‐one, C30H46O2] is a product of betulin oxidation. Crystals were obtained from hexane [form (I)] and dimethyl sulfoxide [form (II)] solutions. Forms (I) and (II) are both orthorhombic. The molecular geometric parameters in the two forms are similar, but the structures are different with respect to the crystal packing. Polymorph (I) contains two independent molecules in the asymmetric unit, while polymorph (II) contains only one molecule, which has a disordered aldehyde group [the disorder ratio is 0.769 (4):0.231 (4)]. In each molecule, the six‐membered rings have chair conformations, whereas the cyclopentane ring in each molecule adopts an envelope conformation. All the rings in the lupane nucleus are trans‐fused. The extended structures of both polymorphs are stabilized by weak intermolecular C—H...O and van der Waals interactions. Weak intramolecular C—H...O interactions are also observed.  相似文献   

10.
Crystallographic studies of yellow and colorless forms of [(C(6)H(11)NC)(2)Au(I)](PF(6)) show that they are polymorphs with differing, but close, contacts between the gold atoms which form extended chains. In the colorless polymorph the gold cations form linear chains with a short Au...Au contact (3.1822(3) A) indicative of an aurophilic attraction. The structure of the yellow polymorph is more complicated with four independent cations forming kinked, slightly helical chains with very short Au...Au contacts of 2.9803(6), 2.9790(6), 2.9651(6), and 2.9643(6) A. However, in the related compound, [(CH(3)NC)(2)Au(I)](PF(6)), each cation is surrounded by six hexafluorophosphate ions and there is no close Au...Au contact despite the fact that the isocyanide ligand has less steric bulk. The crystalline colorless and yellow polymorphs are both luminescent at 298 K, lambda(max): 424 nm (colorless) or 480 nm (yellow). Colorless solutions of the two polymorphs have identical absorption spectra and are nonluminescent at room temperature. Freezing solutions of [(C(6)H(11)NC)(2)Au(I)](PF(6)) produces intense luminescence which varies depending upon the solvent involved. Each polymorph melts to give a colorless but luminescent liquid which reverts to the yellow polymorph upon cooling.  相似文献   

11.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

12.
Pyrazolidine‐3,5‐diones and their derivatives exhibit a wide range of biological activities. Seeking to explore the effect of combining a hydrocarbyl ring substituent, as present in sulfinpyrazone (used to treat gout), with a chlorinated aryl ring, as present in muzolimine (a diuretic), we explored the reaction between 1‐phenylpyrazolidine‐3,5‐dione and 4‐chlorobenzaldehyde under mildly basic conditions in the expectation of producing the simple condensation product 4‐(4‐chlorobenzylidene)‐1‐phenylpyrazolidine‐3,5‐dione. However, the reaction product proved to be meso‐(E,E)‐1,1′‐[1,2‐bis(4‐chlorophenyl)ethane‐1,2‐diyl]bis(phenyldiazene), C26H20Cl2N4, and a tentative mechanism is proposed. Crystallization from ethanol produces two concomitant polymorphs, i.e. a triclinic form, (I), in the space group P, and a monoclinic form, (II), in the space group C2/c. In both polymorphs, the molecules lie across centres of inversion, but in (II), the molecules are subject to whole‐molecule disorder equivalent to configurational disorder with occupancies of 0.6021 (19) and 0.3979 (19). There are no hydrogen bonds in the crystal structure of polymorph (I), but the molecules of polymorph (II) are linked by C—H...π(arene) hydrogen bonds into complex chains, which are further linked into sheets by C—H...N interactions.  相似文献   

13.
The title compound, C19H14N2O4, was found to have two crystal polymorphs, in which the molecular structures of the diacetylenic compound are broadly similar. The main structural difference between the polymorphs concerns the intermolecular hydrogen‐bonding motifs adopted, namely a one‐dimensional zigzag polymer linked by N—H…N(py) (py is pyridine) interactions in polymorph I and a centrosymmetric dimeric motif formed by N—H…O=C interactions in polymorph II. The diacetylene cores of the molecules stack along the a and b axes in polymorphs I and II, respectively. It was found that only the molecular arrangement in polymorph II satisfies Baughman's criterion to afford polydiacetylenes (PDAs) by thermal annealing or irradiation with light. This predicted polymerization activity was confirmed by experiment.  相似文献   

14.
DSC and adiabatic calorimetry study of the polymorphs of paracetamol   总被引:3,自引:0,他引:3  
Monoclinic (I) and orthorhombic (II) polymorphs of paracetamol were studied by DSC and adiabatic calorimetry in the temperature range 5 - 450 K. At all the stages of the study, the samples (single crystals and powders) were characterized using X-ray diffraction. A single crystal → polycrystal II→ I transformation was observed on heating polymorph II, after which polymorph I melted at 442 K. The previously reported fact that the two polymorphs melt at different temperatures could not be confirmed. The temperature of the II→I transformation varied from crystal to crystal. On cooling the crystals of paracetamol II from ambient temperature to 5 K, a II→ I transformation was also observed, if the 'cooling-heating' cycles were repeated several times. Inclusions of solvent (water) into the starting crystals were shown to be important for this transformation. The values of the low-temperature heat-capacity of the I and II polymorphs of paracetamol were compared, and the thermodynamic functions calculated for the two polymorphs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Crystallization of the hexane reaction mixture after treatment of LiGe(OCH2CH2NMe2)3 with Ph3CN3 gives rise to a new triclinic (space group P) polymorph of triphenylmethylamine, C19H17N, (I), containing dimers formed by N—H...N hydrogen bonds, whereas the structure of the known orthorhombic (space group P212121) polymorph of this compound, (II), consists of isolated molecules. While the dimers in (I) lie across crystallographic inversion centres, the molecules are not truly related by them. The centrosymmetric structure is due to the statistical disordering of the amino H atoms participating in the N—H...N hydrogen‐bonding interactions, and thus the inversion centre is superpositional. The conformations and geometric parameters of the molecules in (I) and (II) are very similar. It was found that the polarity of the solvent does not affect the capability of triphenylmethylamine to crystallize in the different polymorphic modifications. The orthorhombic polymorph, (II), is more thermodynamically stable under normal conditions than the triclinic polymorph, (I). The experimental data indicate the absence of a phase transition in the temperature interval 120–293 K. The densities of (I) (1.235 Mg m−3) and (II) (1.231 Mg m−3) at 120 K are practically equal. It would seem that either the kinetic factors or the effects of the other products of the reaction facilitating the hydrogen‐bonded dimerization of triphenylmethylamine molecules are the determining factor for the isolation of the triclinic polymorph (I) of triphenylmethylamine.  相似文献   

16.
Characterization of clarithromycin polymorph was performed by solid-state cross polarization and magic angle spinning (CP/MAS) 13C-NMR spectroscopy. Two polymorphs, form II and form I, of clarithromycins indicated characteristic resonances of C1 carbonyl carbon at 176.2 and 175.2 ppm, respectively. Since each peak of C1 carbon was well separated in the spectrum of the two polymorphs, we performed quantitative analysis of the polymorphic fraction from the peak area of these peaks. The peak area of form I was found to linearly increase with an increase of its content, with a correlation coefficient of above 0.99. Solid-state NMR was found to be a useful technique to determine the characteristics of the polymorphic forms.  相似文献   

17.
The crystal structure of 5‐fluorosalicylic acid is known from the literature [Choudhury & Guru Row (2004). Acta Cryst. E 60 , o1595–o1597] as crystallizing in the monoclinic crystal system with space‐group setting P21/n and with one molecule in the asymmetric unit (polymorph I). We describe here a new polymorph which is again monoclinic but with different unit‐cell parameters (polymorph II). Polymorph II has two molecules in the asymmetric unit. Its structure was modelled as a twin, with a pseudo‐orthorhombic C‐centred twin cell.  相似文献   

18.
We report the crystal structure and crystallization conditions of a first hydrated form of metacetamol (a hemihydrate), C8H9NO2·0.5H2O. It crystallizes from metacetamol‐saturated 1:1 (v/v) water–ethanol solutions in a monoclinic structure (space group P21/n) and contains eight metacetamol and four water molecules per unit cell. The conformations of the molecules are the same as in polymorph II of metacetamol, which ensures the formation of hydrogen‐bonded dimers and R22(16) ring motifs in its crystal structure similar to those in polymorph II. Unlike in form II, however, these dimers in the hemihydrate are connected through water molecules into infinite hydrogen‐bonded molecular chains. Different chains are linked to each other by metacetamol–water and metacetamol–metacetamol hydrogen bonds, the latter type being also present in polymorph I. The overall noncovalent network of the hemihydrate is well developed and several types of hydrogen bonds are responsible for its formation.  相似文献   

19.
A luminescent cocrystal system is reported to undergo crystal-to-crystal phase transformation from yellow-emitting polymorph I to green-emitting polymorph II, triggered by THF fuming or heating, and the green emission can recover to the initial yellow emission by grinding. The established spectroscopic and crystallographic analyses demonstrate that the phase transition occurred and benefits from the combined effect of similar molecular arrange sequence and unique alteration of intermolecular interactions from halogen/hydrogen bonds in I to π–π stacking in II. Furthermore, I and II exhibit red-shift emission under hydrostatic pressure. The emission of I and II shows a red-shift and recovers towards the initial emission upon acid–base fuming. This is a rare example of reversible luminescent switching of cocrystal based upon crystal-to-crystal phase transition, and provides an alternative strategy to develop multi-stimuli responsive materials.  相似文献   

20.
A computationally assisted approach has enabled the first catemeric polymorph of carbamazepine (form V) to be selectively formed by templating the growth of carbamazepine from the vapour phase onto the surface of a crystal of dihydrocarbamazepine form II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号