首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to develop an LC-MS/MS assay for the quantitation of S002-857 in plasma, urine and feces to evaluate the pharmacokinetic parameters and elimination pathway for further development of S002-857. A sensitive and selective LC-MS/MS method was developed and validated for estimating a novel antidiabetic flavone derivative, S002-857, synthesized by Central Drug Research Institute, CSIR, Lucknow, India. Plasma and urine samples were prepared by two-step liquid-liquid extraction with diethyl ether and feces by protein precipitation using acetonitrile. The analyte was chromatographed on a cyano column with methanol-ammonium acetate buffer (pH 4.6, 10 mM; 90:10, v/v). The calibration curves were linear over a range of 0.78?C400 ng mL?1 for plasma and 1.56?C400 ng mL?1 for urine and feces samples. The accuracy and precision were <15% for plasma, urine and feces samples. The recoveries from spiked plasma, urine and feces samples were >85%. S002-857 was stable in plasma for 8 h at ambient temperature, 30 days at ?60 °C and after three freeze-thaw cycles. The assay was successfully applied to determine the pharmacokinetic parameters and excretion profile in male rats.  相似文献   

2.
A rapid and sensitive LC?CMS?CMS method for the simultaneous determination of escin Ia and isoescin Ia in rat plasma, urine, feces and bile samples was developed and validated. Analytes and telmisartan [internal standard (IS)] were extracted by solid-phase extraction on C18 cartridges. Components in the extract were separated on an HC-C18 column (5 ??m, 150 × 4.6 mm i.d.) using 10 mM ammonium acetate?Cmethanol?Cacetonitrile (40:30:30, v/v/v) as the mobile phase. The method demonstrated good linearity from 5 ng mL?1 (LLOQ) to 1,500 ng mL?1 for both escin Ia and isoescin Ia. Intra- and inter-day precision measured as RSD was within ±15%. Recoveries and matrix effects of both escin Ia and isoescin Ia were satisfactory in all four matrices examined. The method was successfully applied to a pharmacokinetic study in Wistar rats after a single intravenous administration of escin Ia at the dose of 1.0 mg kg?1.  相似文献   

3.
Fan Xu  Guili Xu  Beicheng Shang  Fang Yu 《Chromatographia》2009,69(11-12):1421-1426
A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min?1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL?1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL?1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL?1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

4.
A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL?1 in plasma and 0.32–20 μg mL?1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.  相似文献   

5.
A simple and rapid high-performance liquid chromatographic–electrospray ionization (ESI) tandem mass spectrometric method has been developed for elucidation of the structures of the metabolites of arecoline in rat urine after administration of a single dose (20 mg kg?1). The urine samples were purified on a C18 solid-phase extraction cartridge and analysis was then performed on a reversed-phase C18 column with 60:40 (v/v) methanol–0.01% triethylamine solution (2 mmol L?1, adjusted to pH 3.5 with formic acid) as mobile phase and detection by on-line MS–MS. Identification of the metabolites and elucidation of their structures were performed by comparing molecular masses (ΔM), retention-times, and product ion spectra with those of the parent drug. The parent drug arecoline, four phase-I metabolites, and one phase-II metabolite were identified in rat urine.  相似文献   

6.
A simple, rapid, and reproducible isocratic reversed-phase LC method has been established for simultaneous analysis of mirodenafil and its two main metabolites, SK3541 and SK3544, in rat plasma, urine, and tissue homogenates. Samples were deproteinized with acetonitrile containing sildenafil (internal standard). The compounds were separated on a C18 column with 52:48 (v/v) 0.02 m ammonium acetate buffer (pH 6)—acetonitrile as mobile phase at a flow rate of 1.4 mL min?1. UV detection was at 254 nm and detection limits of mirodenafil, SK3541, and SK3544 in plasma were 0.03, 0.05, and 0.1 μg mL?1, respectively. The method is applicable to pharmacokinetic studies of mirodenafil and its metabolites in rats.  相似文献   

7.
A simple, rapid, and selective method to determine the concentration of mildronate in human plasma and urine using ultra performance liquid chromatography?Ctandem mass spectrometry (UPLC-MS-MS) was developed and validated. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization at m/z 147.2?C58.0 for mildronate and m/z 147.2?C87.8 for the internal standard, carbachol. The UPLC separation was carried out with a UPLC BEH HILIC column. The mobile phase consisted of 0.08% formic acid in 30 mM ammonium acetate solution and acetonitrile (23:77, v/v). Plasma samples were extracted from plasma by protein precipitation and urine samples were diluted with the mobile phase. The analysis time was 3.5 min for each sample. Linear calibration curves ranged from 0.10 to 100.00 ??g mL?1 in human plasma and 0.50 to 600.00 ??g mL?1 in urine. The method had been successfully applied to a pharmacokinetic study in healthy volunteers. After single intravenously administration of 250, 500, and 750 mg mildronate, the elimination half-life (t 1/2) were (2.74 ± 0.67), (4.86 ± 0.82) and (5.16 ± 0.77) h, respectively. The t 1/2 for the 250 mg dose did vary significantly with other dosages (P < 0.05), mildronate may have non-linear pharmacokinetics in humans.  相似文献   

8.
A rapid, selective and sensitive reversed-phase liquid chromatographic (LC) method was developed for the determination of piribedil in human serum, urine and pharmaceutical dosage form. LC analysis was carried out using reversed-phase isocratic elution with a C18 column and a mobile phase of 0.01 M phosphate buffer-acetonitrile (50:50, v/v). The chromatograms showed good resolution and sensitivity with no interference of human serum and urine. Piribedil concentrations were determined using diode array detection at 240 nm. Sildenafil citrate was used as internal standard. The limit of quantification (LOQ) and limit of detection (LOD) concentrations were 107.2 and 321.6 pg mL?1, 96.6 and 290.4 pg mL?1, 161.7 and 53.9 pg mL?1 for urine, serum and pharmaceutical dosage forms, respectively. The method was validated for its linearity, precision and accuracy and applied to the tablets, urine and human serum. In addition, the results were compared to those obtained from UV-spectrophotometry.  相似文献   

9.
A rapid, simple, and sensitive high-performance liquid chromatographic method for quantification of curcumin in dog plasma has been developed and validated. After addition of the internal standard (berberine), plasma was acidified and extracted with ethyl acetate. Analysis was performed on a C18 column. The mobile phase was acetonitrile–5% acetic acid, 52:48 (v/v) and the flow rate 1.0 mL min?1. The eluent was monitored at 425 nm. Chromatographic separation was achieved in less than 7 min and the calibration plot was linear over the concentration range 2–128 ng mL?1. Intra- and inter-assay variability were less than 7.3%. The accuracy ranged from 98.7 to 105.0%. The method was successfully applied to a pharmacokinetic study of curcumin in dogs.  相似文献   

10.
Chae  Yoon-Jee  Koo  Tae-Sung  Lee  Kyeong-Ryoon 《Chromatographia》2012,75(19):1117-1128

A liquid chromatography-mass spectrometry (LC-MS) assay was developed and validated for the quantification of lurasidone, an atypical antipsychotic drug, in rat plasma, bile, and urine. Rat plasma, bile, or urine samples were processed by liquid–liquid extraction and injected onto an LC-MS system for the quantification of lurasidone and ziprasidone (an internal standard). Lurasidone and ziprasidone were separated from endogenous substances using a Gemini C6-Phenyl column with mixture of acetonitrile and 0.1 % formic acid (80:20, v/v) as the mobile phase. Quantification was performed using the selected ion monitoring mode at m/z 493 for lurasidone and m/z 413 for the IS. The detector response was specific and linear for lurasidone in the concentration range 5–5,000 ng mL−1 The intra- and inter-day accuracy and precision of the method were determined to be within the acceptable criteria for assay validation guidelines. In addition, lurasidone was stable under a variety of processing and handling conditions. Lurasidone concentrations could be readily measured in rat plasma, bile, and urine samples up to 24 h after an intravenous or oral administration, suggesting that the assay can be used in pharmacokinetic studies of lurasidone in rats.

  相似文献   

11.
Xu  Fan  Xu  Guili  Shang  Beicheng  Yu  Fang 《Chromatographia》2009,69(11):1421-1426

A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min−1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL−1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL−1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL−1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.

  相似文献   

12.
An accurate LC method was developed and validated for simultaneous determination of irinotecan (CPT-11) and its active metabolite SN-38 in rat plasma. Plasma samples were pretreated with 0.4 g mL?1 sodium dodecyl sulfate to inactive the carboxylesterase and avoid the conversion of CPT-11 to SN-38. Chromatographic separation was achieved on a Diamaonsil C18 column using acetonitrile–50 mM phosphate buffered solution (30:70, v/v) at pH 4.0 as the mobile phase with the flow rate of 1 mL min?1. The linear quantitation ranges for CPT-11 and SN-38 were 5.05–3,030 and 3.15–315 ng mL?1 with r 2 > 0.99, respectively. The lower limit of quantification (LLOQ) was 2.33 ng mL?1 for CPT-11 and 0.26 ng mL?1 for SN-38 with intra- and inter-day relative standard deviation of <12% and the accuracy values of >90%. The method was proved to be accurate and sensitive enough and was successfully applied to a pharmacokinetic study of CPT-11 in rats.  相似文献   

13.
A simple and sensitive liquid chromatographic method was developed for quantification of cefteram in human plasma. Amoxicillin was used as an internal standard. The present method used protein precipitation for extraction of cefteram from human plasma. Separation was carried out on a reversed-phase C18 column. The column effluent was monitored by UV detection at 262 nm. The mobile phase was a mixture of methanol and water containing 0.3% v/v triethylamine and 0.6% v/v glacial acetic acid (35:65:0.3:0.6 v/v) at a flow rate of 0.30 mL min?1. The column temperature was 20 °C. This method was linear over the range of 47.5–4,750.0 ng mL?1 with determination coefficient greater than 0.99. The mean extraction recovery of cefteram and IS was ≥76.82 and ≥76.49%, respectively, and the method was found to be precise, accurate, and specific during the study. The method was successfully applied for a pharmacokinetic study of cefteram in human.  相似文献   

14.
A simple and rapid reversed-phase LC method was developed and validated for simultaneous determination of three flavonoids, quercetin (QU), kaempferol (KA) and isorhamnetin (IS), in rabbit blood plasma. The plasma was deproteinized using 10% trichloroacetic acid and extracted by n-butanol–acetoacetate solvent prior to LC analysis. The analyte was separated on a reversed-phase column with acetonitrile and 0.1% phosphoric acid in water (27:73, v/v) as mobile phase at a flow-rate of 0.8 mL min?1, and UV detection wavelength at 369 nm. By this developed method, the concentrations of QU, KA and IS were linearly related to their responses in the range of 0.05–2.5 μg mL?1. The precision and accuracy for QU, KA and IS in plasma were within ±15% except for the limit of quantitation (LOQ), where they were within ±20%. The validated method has been successfully applied in the pharmacokinetic study of QU, KA and IS in rabbits after intragastric administration of an ethanol extract from traditional Chinese medicine Pollen Typhae.  相似文献   

15.
《Analytical letters》2012,45(1):68-83
Abstract

A simple and reliable high-performance liquid chromatographic (HPLC) method was developed for the determination of belotecan in the plasma, urine, and bile samples of rats. Belotecan was analyzed with HPLC using a C18 column with fluorescence detector. A mixture of acetonitrile–0.1 M potassium phosphate buffer at pH 2.4 (25:75, v/v) and 0.2% trifluoroacetic acid was used as the mobile phase. The lower limits of quantitation (LOQ) were 5 ng mL?1 for the plasma and 5 µg mL?1 for the urine and bile samples. The method has been readily applied for the routine pharmacokinetic study of belotecan in small laboratory animals.  相似文献   

16.
An accurate, simple, and sensitive reversed-phase high-performance liquid chromatographic method, with loratadine as internal standard (IS) and UV detection at 286 nm, has been developed for deterination of cystine in human urine. The major innovations of the method include use of acrylonitrile to protect cysteine from oxidization to cystine, separation of cysteine, as the dansyl derivative, from cystine, and use of isocratic elution instead of gradient elution to reduce the time and cost of serial analysis. The mobile phase was 0.05 M sodium acetate–methanol, 35:65 (v/v), adjusted to pH 3.5 with 2.5 M citric acid, at a flow rate of 1.0 mL min?1. The retention times of cystine and the IS were 16.6 and 19.9 min, respectively. The limit of detection for cystine was 0.3 mg L?1. Extraction recovery of cystine was >85.6%. Intra-day and inter-day precision (RSD) for cystine were below 4.3 and 8.5%, respectively. There was no chromatographic interference from other α-amino acids present in mammalian proteins, or from other urine components. The calibration plot for the cystine derivative was linear in the range 1–500 mg L?1 and the correlation coefficient was 0.9992. The method was validated appropriately and successfully used for determination of cystine in human urine.  相似文献   

17.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

18.
Jin Hua Wen  Yu Qing Xiong 《Chromatographia》2009,70(11-12):1715-1719
Liquid chromatography–electrospray ionization mass spectrometry has been used for rapid, selective, and sensitive quantitative analysis of mitiglinide in human plasma. Sample pretreatment involved solid-phase extraction from plasma with gliclazide as internal standard. Separation was performed on a C18 column (150 × 2.0 mm) with 71:29 (v/v) acetonitrile–water (containing 0.1% formic acid and 0.2 mmol L?1 ammonium acetate) as mobile phase at a flow rate of 0.2 mL min?1. The method was validated then successfully applied to a clinical bioequivalence study of mitiglinide in 20 healthy volunteers after oral administration.  相似文献   

19.
A rapid, specific, and sensitive ultra-performance liquid chromatographic method for analysis of levofloxacin in human plasma has been developed and validated. Plasma samples were spiked with the internal standard (enoxacin) and extracted with 10:1 (v/v) ethyl acetate–isopropanol. UPLC was performed on a 100 × 2.1 mm i.d., 1.7 µm particle, C18 column with 88:12 (v/v) 0.4% triethylamine buffer (pH 3)–acetonitrile as mobile phase, pumped isocratically at a pressure of 11,000 psi (758 bar) and a flow-rate of 0.3 mL min?1. Ultraviolet detection was performed at 300 nm. The retention times of levofloxacin and enoxacin were 3.4 and 2.8 min, respectively, and the run-time was 5 min. Calibration showed that response was a linear function of concentration over the range 0.05–10 µg mL?1 (r 2 ≥ 0.99) and the method was validated over this range for both precision and accuracy. The relative standard deviation was <15% for both intra-day and inter-day assay (n = 5). Levofloxacin and enoxacin were stable in plasma; there was no evidence of degradation during three freeze–thaw cycles, post-preparative stability at 20 °C was ≥24 h, short-term stability at room temperature was ≥6 h, and long-term stability at ?70 °C was ≥30 days. The method was successfully used in a study of the bioequivalence of two levofloxacin tablet formulations in healthy volunteers.  相似文献   

20.
An isocratic high-performance liquid chromatographic method with coulometric electrochemical detection has been used for analysis of 5-methyltetrahydrofolate (5-MTHF) in human plasma. A 250 mm × 4.6 mm i.d., 5-μm particle, C18 column was used with 12:88 (v/v) acetonitrile ?35 mM sodium phosphate buffer pH 3.8 as mobile phase at a flow rate of 1.0 mL min?1. The method was validated for 5-MTHF plasma concentrations in the range 2.5–100.0 nM. The method was characterized by a good linearity (regression coefficient r ≥ 0.9989) and limits of detection and quantification of 0.72 and 2.16 nM, respectively. Mean recovery at low and high concentrations ranged from 89.1 to 96.3%, respectively, with a relative standard deviation <4.6%. Between-run imprecision (4.2%) was higher than within-run imprecision (3.4%). The proposed separation and detection procedures were successfully applied to analysis of 5-MTHF in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号