首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A simple, isocratic, rapid, and accurate reversed-phase high-performance liquid chromatographic method has been established for quantitative determination of zonisamide. The method is also applicable to determination of related substances in the bulk drug. Chromatographic separation was achieved on a 250 mm × 4.6 mm, 5-μm particle, C18 column; the mobile phase was a 70:30 (v/v) mixture of 0.1% (v/v) aqueous triethylamine, adjusted to pH 2.5 with dilute orthophosphoric acid, and acetonitrile. Chromatographic resolution of zonisamide from its potential impurity, A, was found to be >2. The limits of detection and quantification of zonisamide and impurity A were 0.04 and 0.12 μg mL?1, respectively, for 20 μL injection volume. Recovery of zonisamide ranged from 98.5 to 101.2% and recovery of impurity A from a sample of zonisamide ranged from 97.4 to 102.7%. The method was validated for linearity, accuracy, precision, and robustness.  相似文献   

2.

A simple, isocratic, rapid, and accurate reversed-phase high-performance liquid chromatographic method has been established for quantitative determination of zonisamide. The method is also applicable to determination of related substances in the bulk drug. Chromatographic separation was achieved on a 250 mm × 4.6 mm, 5-μm particle, C18 column; the mobile phase was a 70:30 (v/v) mixture of 0.1% (v/v) aqueous triethylamine, adjusted to pH 2.5 with dilute orthophosphoric acid, and acetonitrile. Chromatographic resolution of zonisamide from its potential impurity, A, was found to be >2. The limits of detection and quantification of zonisamide and impurity A were 0.04 and 0.12 μg mL−1, respectively, for 20 μL injection volume. Recovery of zonisamide ranged from 98.5 to 101.2% and recovery of impurity A from a sample of zonisamide ranged from 97.4 to 102.7%. The method was validated for linearity, accuracy, precision, and robustness.

  相似文献   

3.
We present a simple and reliable method for simultaneous determination of voriconazole and its main metabolite resulting from N-oxidation (UK-121,265), in human plasma. The work-up procedure used acetonitrile and potassium salts to precipitate plasma proteins. No internal standard was used. The chromatographic system used a LiChroCART® 250-4 cartridge packed with LiChrospher® 100 RP-8 (diameter particules, 5 μm). The UV monochromatic detector was set on 260 nm. The mobile phase consisted of a 60/40 (v/v) mixture of acetonitrile and water. The flow rate was 1 mL min?1. The retention times for voriconazole and its metabolite were 8.98 and 4.02 min respectively, and total run time was 12 min. The linearity of the method was investigated from 0.31 to 10.0 mg L?1; the lowest limit of quantification was 0.30 mg L?1. Precision ranged from 2.41% to 6.32% for voriconazole and 0.80% to 11.6% for the N-oxide voriconazole metabolite. Accuracy was between 93.0% and 101% for voriconazole and 90.0% and 101% for the N-oxide voriconazole metabolite. This rapid and accurate method could be interesting to investigate metabolite/voriconazole ratio with respect to CYP2C19 genetic status and CYP3A4 activity changes.  相似文献   

4.
A gradient reversed-phase liquid chromatographic assay was developed for the quantitative determination of the non-steroidal anti-inflammatory drug valdecoxib. The developed method was also applicable to the determination of related substances in the bulk drug. Forced degradation studies were performed on bulk valdecoxib using acid (2.0 N hydrochloric acid), base (2.0 N sodium hydroxide), oxidation (6.0% v/v hydrogen peroxide), water hydrolysis, heat (60 °C) and photolysis. Mild degradation was observed using alkaline conditions and considerable degradation observed during oxidative stress. Chromatographic separation of process-related impurities and degradation products was achieved using a 5 micron Zorbax SB-CN LC column. The mobile phase consisted of aqueous potassium dihydrogen phosphate (pH 3.0) and acetonitrile. Stressed samples were assayed using the developed LC method and determination of the mass balance accounted for 99.5%, thus indicating the suitability of this stability-indicating method. Linearity, accuracy, precision and robustness have also been evaluated.  相似文献   

5.
A inexpensive and rapid isocratic LC method has been developed for the quantitative determination of tebipenem—a new β-lactam antibiotic. Stress degradation studies were performed on tebipenem in acidic (0.2 N hydrochloric acid) and basic (0.02 N sodium hydroxide) solutions, in a solution with oxidizing agent (3 % hydrogen peroxide), and in the solid state, during thermolysis and photolysis. For a chromatographic separation of tebipenem and its degradation products, a C-18 stationary phase and 12 mM ammonium acetate-acetonitrile (96:4 v/v) were used. A quantitative determination of tebipenem was carried out by using a PDA detector at 298 nm, with a flow rate of 1.2 mL min?1. The linear regression analysis for the calibration plots showed a good linear relationship (r = 0.999) in the concentration range 0.041–0.240 mg mL?1. The method demonstrated good precision (1.14–1.96 % RSD) and recovery (99.60–101.90 %). The limits of detection and quantitation were 9.69 and 29.36 μg mL?1, respectively. The analysis of tebipenem reactivity was supported by quantum chemical calculations based on the density functional theory (DFT). The analysis of the electron density of the HOMO and LUMO of tebipenem suggested the possibility of electron transport in the molecule during the degradation of bi-cyclic 4:5 fused penem rings.  相似文献   

6.
A reversed-phase liquid chromatographic (LC) method was developed for the assay of nitazoxanide (NTZ) in solid dosage formulations. An isocratic LC separation was performed on a Phenomenex Synergi Fusion C18 column (250 mm × 4.6 mm, i.d., 4 μm particle size) using a mobile phase of 0.1% o-phosphoric acid solution, pH 6.0: acetonitrile (45:55, v/v) at a flow rate of 1.0 mL min−1. Detection was achieved with a photodiode array detector at 240 nm. The detector response for NTZ was linear over the concentration range from 2 to 100 μg mL−1 (r = 0.9999). The specificity and stability-indicating capability of the method were proved using stress conditions. The RSD values for intra-day precision were less than 1.0% for tablets and powder for oral suspension. The RSD values for inter-day precision were 0.6 and 0.7% for tablets and powder for oral suspension. The accuracy was 100.4% (RSD = 1.8%) for tablets and 100.9% (RSD = 0.3%) for powder for oral suspension. The limits of quantitation and detection were 0.4 and 0.1 μg mL−1. There was no interference of the excipients on the determination of the active pharmaceutical ingredient. The proposed method was precise, accurate, specific, and sensitive. It can be applied to the quantitative determination of drug in tablets and powder for oral suspension.  相似文献   

7.
JPC – Journal of Planar Chromatography – Modern TLC - A simple, sensitive, selective, precise, and stability-indicating high-performance thin-layer chromatographic method for analysis...  相似文献   

8.
A validated, specific, stability-indicating reversed-phase liquid chromatographic method has been developed for quantitative analysis of moxifloxacin and its related substances in bulk samples and pharmaceutical dosage forms in the presence of degradation products and process-related impurities. Forced degradation studies were performed on bulk samples of moxifloxacin, in accordance with ICH guidelines, using acidic, basic, and oxidizing conditions, and thermal and photolytic stress, to show the stability-indicating power of the method. Significant degradation was caused by oxidative stress and by basic conditions; no degradation was observed under the other stress conditions. The method was optimized by analysis of the samples generated during the forced degradation studies and sample solutions spiked with the impurities. Good resolution between the analyte peak and peaks corresponding to process-related impurities and degradation products was achieved on a C18 column with a simple linear mobile phase gradient prepared from aqueous sodium dihydrogen orthophosphate dihydrate containing triethylamine, pH adjusted to 3.0 with orthophosphoric acid, and methanol. Detection was performed at 240 nm. Limits of detection and quantification were established for moxifloxacin and its process related impurities. When the stressed test solutions were assayed against moxifloxacin working standard solution the mass balance was always between 99.3 and 100.1%, indicating the method was stability-indicating. The method was validated in accordance with ICH guidelines, and found to be suitable for checking the quality of bulk samples of moxifloxacin at the time of release of a batch and during storage (long term and accelerated stability testing was conducted).  相似文献   

9.
A validated, specific, stability-indicating reversed-phase liquid chromatographic method has been developed for quantitative analysis of gatifloxacin, its degradation products, and its process-related impurities in bulk samples and in pharmaceutical dosage forms. Forced degradation of gatifloxacin bulk sample was conducted in accordance with ICH guidelines. Acidic, basic, neutral, and oxidative hydrolysis, thermal stress, and photolytic degradation were used to assess the stability-indicating power of the method. Substantial degradation was observed during oxidative hydrolysis. No degradation was observed under the other stress conditions. The method was optimized using samples generated by forced degradation and sample solution spiked with impurities. Good resolution of the analyte peak from peaks corresponding to process-related impurities and degradation products was achieved on a C18 column by use of a simple linear mobile-phase gradient prepared from mixtures of acetonitrile and an aqueous solution of sodium dihydrogen orthophosphate dihydrate and triethylamine adjusted to pH 6.5 with orthophosphoric acid. Detection was performed at 240 nm. Limits of detection and quantification were established for gatifloxacin and its process-related impurities. When the stressed test solutions were assayed by comparison with gatifloxacin working standard the mass balance was always close to 99.3%, indicating the method was stability-indicating. Validation of the method was performed in accordance with ICH requirements. The method was found to be suitable for checking the quality of bulk samples of gatifloxacin at the time of batch release and also during storage.  相似文献   

10.
A simple, inexpensive and rapid isocratic LC method has been developed for the quantative determination of Rimonabant, an anti-obesity drug. The method can also be employed for the determination of Rimonabant and its impurities in the bulk drug. Degradation studies were performed on the bulk drug by heating to 60 °C, exposure to UV light at 254 nm, acid (0.5 N hydrochloric acid), base (0.5 N sodium hydroxide) and aqueous hydrolysis and oxidation with 3.0% v/v hydrogen peroxide. Considerable degradation was observed under oxidation conditions. Good resolution between the peaks corresponding to impurities produced during synthesis, degradation products and the analyte was achieved on a Phenomenex Gemini C18 LC column using a mobile phase consisting of a mixture of aqueous potassium dihydrogen phosphate (pH 3.0) and acetonitrile. The degradation samples were assayed against the reference standard of Rimonabant and the mass balance in each case was close to 99.5%. Validation of the method was carried out as per ICH requirements.  相似文献   

11.

A simple, rapid, and precise method is developed for the quantitative determination of lumefantrine (Lume) in active pharmaceutical ingredient (API). A chromatographic separation of Lume and its degradants were achieved with an X-Terra RP18, 250 × 4.6 mm, and 5 μ analytical column using buffer–acetonitrile (30:70 v/v). The buffer used in mobile phase contains 0.1 M sodium perchlorate monohydrate in double distilled water pH adjusted to 2.1 with trifluoroacetic acid. The instrumental settings are flow rate of 0.5 mL (L), column temperature at 35 °C, and detector wavelength of 235 nm using a photodiode array detector. Lume was exposed to thermal, photolytic, hydrolytic and oxidative stress conditions, and the stressed samples were analysed by the proposed method. Peak homogeneity data of Lume obtained by photodiode array detection, in the stressed sample chromatograms, demonstrated the specificity of the method for estimation in the presence of degradants. The described method shows excellent linearity over a range of 10–200 μg L−1 for Lume. The correlation coefficient is 1. The relative standard deviation of peak area for six measurements is always less than 2% between days. The proposed method was found to be suitable and accurate for quantitative determination and stability study of Lume in API.

  相似文献   

12.
A stability-indicating reversed-phase liquid chromatographic (RPLC) method has been established for analysis of ramipril (RAM) and moexipril hydrochloride (MOEX.HCl) in the presence of the degradation products generated in studies of forced decomposition. The drug substances were subjected to stress by hydrolysis (0.1 m NaOH and 0.1 m HCl), oxidation (30% H2O2), photolysis (254 nm), and thermal treatment (80 °C). The drugs were degraded under basic and acidic conditions and by thermal treatment but were stable under other stress conditions investigated. Successful separation of the drugs from the degradation products was achieved on a cyanopropyl column with 40:60 (v/v) aqueous 0.01 m ammonium acetate buffer (pH 6)–methanol as mobile phase at a flow rate of 1 mL min−1. Detection was by UV absorption at 210 nm. Response was a linear function of concentration over the range 5–50 μg mL−1 (r > 0.9995), with limits of detection and quantitation (LOD and LOQ) of 0.04 and 0.09 μg mL−1, respectively, for RAM and 0.014 and 0.32 μg mL−1, respectively, for moexipril. The method was validated for specificity, selectivity, solution stability, accuracy, and precision. Statistical analysis proved the method enabled reproducible and selective quantification of RAM and MOEX as the bulk drug and in pharmaceutical preparations. Because the method effectively separates the drugs from their degradation products, it can be used as stability-indicating.  相似文献   

13.
Two sensitive and selective chromatographic methods were developed and validated for determination of veralipride in presence of its degradation products. Forced degradation studies were performed, using HCl, NaOH and 3% H2O2. The first method is based on thin-layer chromatographic separation of the intact drug spot from its degradation, followed by densitometric measurements. The second method is based on isocratic liquid chromatographic separation of the studied drug from its degradation on a reversed phase C18 column. The proposed LC method was utilized to investigate the kinetics of alkaline degradation process of the selected drug at different temperatures.  相似文献   

14.

This paper discusses the development of a stability-indicating reversed-phase LC method for analysis of cholecalciferol as the bulk drug and in formulations. The mobile phase was acetonitrile–methanol–water 50:50:2 (v/v). The calibration plot for the drug was linear in the range 0.4–10 μg mL−1. The method was accurate and precise with limits of detection and quantitation of 64 and 215 ng, respectively. Mean recovery was 100.71%. The method was used for analysis of cholecalciferol in pharmaceutical formulations in the presence of its degradation products and commonly used excipients.

  相似文献   

15.
The objectives of this investigation were to establish a validated stability-indicating LC method for assay of carvedilol and to study the degradation behaviour of the drug under different ICH-recommended stress conditions. Chromatographic separation was achieved on a C18 column with 55:45 (%, v/v) acetonitrile–0.02 m phosphate buffer, pH 3.5, as mobile phase at a flow rate of 1.0 mL min?1; detection was by UV absorbance at 242 nm. The method was validated for linearity, precision, accuracy, robustness, specificity, and sensitivity, with the bulk drug. The drug was subjected to forced degradation and peaks of all the degradation products were well resolved from that of the pure drug, with significantly different retention times, which indicates the specificity and stability-indicating properties of the method. First-order degradation kinetics of carvedilol were observed under acidic and alkaline conditions. When the utility of the method was verified by analysis of the drug in marketed tablets and a nano-emulsion formulation, the assay was found to be 98.60–99.61 and 99.52–99.87, respectively. These results indicate the method can be successfully used for routine analysis of carvedilol in the bulk drug and in pharmaceutical dosage forms.  相似文献   

16.
A stability-indicating HPLC method for the quantitative determination of Bicalutamide is described. Bicalutamide is a nonsteroidal antiandrogen and is an oral medication that is used for treating prostate cancer. Separation was achieved on a Waters Symmetry shield RP18 HPLC column using a mobile phase consists of a mixture of phosphate buffer (Solvent A) and organic modifier acetonitrile (Solvent B). Degradation studies were performed on bulk samples of bicalutamide using acid (0.5 N methanolic hydrochloric acid), base (0.5 N methanolic sodium hydroxide), oxidation (10% v/v methanolic hydrogen peroxide), heat (60 °C) and UV light (254 nm). Degradation was observed under base hydrolysis to give the starting material used during the synthesis of bicalutamide. The degraded samples were assayed and gave a mass balance greater than 99.5%, thus proving the stability-indicating power of the developed method. The method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

17.
When dealing with simple phenols such as caffeic acid (CA) and ferulic acid (FA), found in a variety of plants, it is very important to have control over the most important factors that accelerate their degradation reactions. This is the first report in which the stabilities of these two compounds have been systematically tested by exposure to various different factors. Forced degradation studies were performed on pure standards (trans-CA and trans-FA), dissolved in different solvents and exposed to different oxidative, photolytic and thermal stress conditions. Additionally, a rapid, sensitive, and selective stability-indicating gas chromatographic-mass spectrometric method was developed and validated for determination of trans-CA and trans-FA in the presence of their degradation products. Cis-CA and cis-FA were confirmed as the only degradation products in all the experiments performed. All the compounds were perfectly separated by gas chromatography (GC) and identified using mass spectrometry (MS), a method that additionally elucidated their structures. In general, more protic solvents, higher temperatures, UV radiation and longer storage times led to more significant degradation (isomerization) of both trans-isomers. The most progressive isomerization of both compounds (up to 43%) was observed when the polar solutions were exposed to daylight at room temperature for 1 month. The method was validated for linearity, precision as repeatability, limit of detection (LOD) and limit of quantitation (LOQ). The method was confirmed as linear over tested concentration ranges from 1−100 mg L−1 (r2s were above 0.999). The LOD and LOQ for trans-FA were 0.15 mg L−1 and 0.50 mg L−1, respectively. The LOD and LOQ for trans-CA were 0.23 mg L−1 and 0.77 mg L−1, respectively.  相似文献   

18.
An isocratic reversed-phase liquid chromatographic method has been developed for quantitative determination of candesartan cilexetil, used to treat hypertension, in the bulk drug and in pharmaceutical dosage forms. The method is also applicable to analysis of related substances. Chromatographic separation was achieved on a 250 mm × 4.6 mm, 5 μm particle, CN column with a 50:50 (v/v) mixture of phosphate buffer, pH 3.0, and acetonitrile as mobile phase. The flow rate was 1.0 mL min−1 and the detection wavelength was 210 nm. Resolution of candesartan cilexetil and six potential impurities was greater than 2.0 for all pairs of compounds. The drug was subjected to hydrolytic, oxidative, photolytic, and thermal stress and substantial degradation occurred in alkaline and acidic media and under oxidative and hydrolytic stress conditions. The major product obtained as a result of basic hydrolysis was different from that produced by acid hydrolysis and aqueous hydrolysis. The stress samples were assayed against a reference standard and the mass balance was found to be close to 99.6%. The method was validated for linearity, accuracy, precision, and robustness.  相似文献   

19.
A simple, rapid, and precise method has been developed for quantitative analysis of lornoxicam (Lxm) in pharmaceutical dosage forms. Chromatographic separation of Lxm and its degradation products was achieved on a C18 analytical column with 0.05% (v/v) aqueous trifluoroacetic acid–acetonitrile, 70:30 (v/v), as mobile phase. The flow rate was 1.0 mL min?1, the column temperature 30 °C, and detection was by absorption at 295 nm using a photodiode-array detector. The number of theoretical plates and tailing factor for Lxm were 6,577 and 1.03, respectively. Lxm was exposed to thermal, photolytic, hydrolytic, and oxidative stress, and the stressed samples were analysed by use of the proposed method. Peak homogeneity data for Lxm in the chromatograms from the stressed samples, obtained by use of the photodiode-array detector, demonstrated the specificity of the method for analysis of Lxm in the presence of the degradation products. The linearity of the method was excellent over the range 10–200 μg mL?1 Lxm. The correlation coefficient was 0.9999. Relative standard deviations of peak areas from six measurements were always less than 2%. The proposed method was found to be suitable and accurate for quantitative analysis of Lxm and study of its stability.  相似文献   

20.
This present work describes the development of a stability-indicating high performance liquid chromatographic method for the quantitative determination of pemetrexed disodium. Pemetrexed disodium is an antifolate antineoplastic agent that exerts its action by disrupting folate-dependent metabolic processes essential for cell replication. The chromatographic separation was achieved on an ACE 3 C18 HPLC column using a mobile phase consisting of a mixture of buffer (solvent A) and organic modifier acetonitrile (solvent B). Forced degradation studies were performed on bulk sample of pemetrexed disodium using acid (0.5 N hydrochloric acid), base (0.5 N sodium hydroxide), oxidation (10% v/v hydrogen peroxide), heat (60 °C) and UV light (254 nm). Degradation of the drug substance was observed in base hydrolysis. Degradation product formed under acid and base hydrolysis was found to be starting material. The stressed samples were assayed using the developed LC method and the mass balance found was close to 99.5%, thus proving its stability-indicating power. The developed method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号