首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shumin Wang  Li Fan  Weiliang Zhou 《Chromatographia》2010,72(11-12):1121-1128
Mixed micellar electrokinetic chromatography with laser-induced fluorescence detection has been used for analysis of the catecholamines norepinephrine, epinephrine, and dopamine. The fluorescent reagent 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein was used to label the three compounds. The reaction rate increased with increasing alcohol concentration in the derivatization buffer. Under the optimum conditions the derivatization reaction was complete within 10 min. The separation was performed with 40 mM sodium cholate, 30 mM sodium dodecyl sulfate, 30 mM sodium borate (pH 9.6), and acetonitrile 8.0% (v/v) as running buffer. The applied potential was 25 kV and the capillary temperature was 25 °C. The detection limits for norepinephrine, epinephrine, and dopamine were 3.3, 0.25, and 1.26 nM. The method was successfully applied to monitoring of these catecholamines in human urine. Recovery of the three analytes ranged from 93.2 to 105.8%.  相似文献   

2.
A new microemulsion electrokinetic chromatographic method has been established for separation and sensitive analysis of the three chlorophenols 2-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol. The optimum microemulsion system was 15 mM SDS, 112 mM n-butanol, and 10 mM n-octane in 20 mM sodium tetraborate (pH 9.0). Under the optimum conditions, baseline separation was achieved within 8 min. The method was used for analysis of a real water sample previously pretreated by SPE. The linear ranges, precision of migration time and peak area, and limits of detection (LOD) were in the ranges of 0.5–50 μg L?1, 4.85–9.75%, 0.49–0.706% (n = 6), and 0.6–1 μg L?1, respectively, for the three chlorophenols.  相似文献   

3.
Escherichia coli is able to utilize l-galactonate as a sole carbon source. A metabolic pathway for l-galactonate catabolism is described in E. coli, and it is known to be interconnected with d-galacturonate metabolism. The corresponding gene encoding the first enzyme in the l-galactonate pathway, l-galactonate-5-dehydrogenase, was suggested to be yjjN. However, l-galactonate dehydrogenase activity was never demonstrated with the yjjN gene product. Here, we show that YjjN is indeed an l-galactonate dehydrogenase having activity also for l-gulonate. The K m and k cat for l-galactonate were 19.5?±?0.6 mM and 0.51?±?0.03 s?1, respectively. In addition, YjjN was applied for a quantitative detection of the both of these substances in a coupled assay. The detection limits for l-galactonate and l-gulonate were 1.65 and 10 μM, respectively.  相似文献   

4.
The chromatographic behaviour of bupropion hydrochloride, a basic drug of pK a 7.9, has been investigated under reversed-phase ion-pairing conditions and the results were used to develop a method for analysis of bupropion hydrochloride in pharmaceuticals. Chromatographic separation of bupropion hydrochloride and carbamazepine (used as internal standard) was performed on a C8 column (150 mm × 4.6 mm i.d., 3.5-μm particle), with 40:10:50 (v/v) methanol–acetonitrile–phosphate buffer (20 mm, pH 3.0), containing 10 mm 1-heptane sulfonic acid sodium salt (1-HSA), as optimum mobile phase at a flow rate of 1.0 mL min?1. UV detection was at 254 nm. The fully validated method enables reproducible and selective analysis of bupropion hydrochloride in pharmaceuticals.  相似文献   

5.
A simple and accurate chiral liquid chromatographic method was developed for the enantiomeric purity determination of d-nateglinide and quantitative determination of l-nateglinide in bulk drug samples. Good resolution (R s  > 6.0) between d-enantiomer and l-enantiomer of nateglinide were achieved with Chiralpak AD-H (250 × 4.6 mm, 5 μm particle size) column using hexane and ethanol (90:10 v/v) as mobile phase at 25 °C temperature. Flow rate was kept as 1.0 mL min?1 and elution was monitored at 210 nm. The effects of the mobile phase composition, the flow rate and the temperature on the chromatographic separation were investigated. Developed method is capable to detect (LOD) and quantitate (LOQ) l-nateglinide to the levels of 0.3 and 1.0 μg mL?1 respectively, for 10 μL injection volume. The percentage RSD of the peak area of six replicate injections of l-nateglinide at LOQ concentration was 5.2. The percentage recoveries of l-nateglinide from d-nateglinide ranged from 97.9 to 99.7. The test solution and mobile phase was found to be stable up to 24 h after preparation. The developed method was validated with respect to LOD, LOQ, precision, linearity, accuracy, robustness and ruggedness.  相似文献   

6.
An electrophoretically mediated microanalysis assay (EMMA) for the determination of the stereoselective reduction of l-methionine sulfoxide diastereomers by methionine sulfoxide reductase enzymes was developed using fluorenylmethyloxycarbonyl (Fmoc)-l-methionine sulfoxide as substrate. The separation of the diastereomers of Fmoc-l-methionine sulfoxide and the product Fmoc-l-methionine was achieved in a successive multiple ionic-polymer layer-coated capillary using a 50 mM Tris buffer, pH 8.0, containing 30 mM sodium dodecyl sulfate as background electrolyte and an applied voltage of 25 kV. 4-Aminobenzoic acid was employed as internal standard. An injection sequence of incubation buffer, enzyme, substrate, enzyme, and incubation buffer was selected. The assay was optimized with regard to mixing time and mixing voltage and subsequently applied for the analysis of stereoselective reduction of Fmoc-l-methionine-(S)-sulfoxide by human methionine sulfoxide reductase A and of the Fmoc-l-methionine-(R)-sulfoxide by human methionine sulfoxide reductase B. The Michaelis–Menten constant, K m, and the maximum velocity, v max, were determined. Essentially identical data were determined by the electrophoretically mediated microanalysis assay and the analysis of the samples by CE upon offline incubation. Furthermore, it was shown for the first time that Fmoc-methionine-(R)-sulfoxide is a substrate of human methionine sulfoxide reductase B.
Figure
Stereospecific EMMA for methionine sulfoxide reductase enzymes Methionine sulfoxide [Met(O)] which may be generated via oxidation by reactive oxygen species (ROS) is reduced by methionine sulfoxide reductase (Msr) enzymes in a stereospecific manner. The present assay allows the in-capillary incubation of recombinant human Msr enzymes followed by separation and analysis of the Met(O) diastereomers as well as the product methionine.  相似文献   

7.
In the present study, a new LC method is described for the quantitation of tryptophan (Trp) in lysozyme and enzymatic lysozyme hydrolysate. To compensate for partial breakdown of Trp during hydrolysis with 4 M methanesulfonic acid, an enantiomer dilution method was developed. The method makes use of free d-Trp or a d-Trp-containing dipeptide as internal standard for the quantitation of l-tryptophan in these matrices. After acid hydrolysis in 4 M methanesulfonic acid, LC analysis is performed on a Crownpak CR chiral column in combination with fluorescence detection. Optimum time and temperature for the acid hydrolysis were investigated in order to obtain complete hydrolysis of the source materials. A comparison of the l-Trp recoveries was made for d-Trp and Gly-d-Trp as internal standards. By choosing a hydrolysis time of 150 min at 150 °C, 93% recovery of l-Trp from lysozyme was achieved. Under these conditions, no racemization occurred. When choosing d-Trp as internal standard, a direct LC method for l-Trp in lysozyme and enzymatic lysozyme hydrolysate was established without the need for pre-column derivatization and without the need to use Trp protecting agents during acid hydrolysis.  相似文献   

8.
Stereoselective amino acid analysis has increasingly moved into the scope of interest of the scientific community. In this work, we report a study on the chiral separation of underivatized d,l-His by ligand exchange capillary electrophoresis (LECE), utilizing accurate ex ante calculations. This has been obtained by the addition to the background electrolytes (BGE) of NaClO4 which renders the separations “all in solution processes”, allowing to accurately calculate in advance the concentrations of the species present in solution and to optimize the system performances. To this aim, the formation of ternary complexes of Cu2+ ion and l-lysine (l-Lys) or l-ornithine (l-Orn) with l- and d-histidine (His), and histamine (Hm) have been studied by potentiometry and calorimetry at 25 °C and with 0.1 mol dm?3 (KNO3) in aqueous solution. The ternary species [Cu(L)(l-His)H]+ and [Cu(L)(d-His)H]+ (where L?=?l-Lys or l-Orn) show a slight but still detectable stereoselectivity, and the determination of ΔH° and ΔS° values allowed the understanding of the factors which determine this phenomenon. The stereoselectivity showed by the protonated ternary species has been exploited to chirally separate d,l-His in LECE, by using the binary complexes of copper(II) with l-Lys or l-Orn as background electrolytes added with the appropriate amounts of NaClO4.
Figure
Schematic view of the separation process  相似文献   

9.
Carbohydrate recognition of some bioactive symmetrical tripodal receptor type tris(2-aminoethyl)amine (TAEA) derivatives was investigated. In calorimetric experiments, the highest binding constant (Ka) of compound C (C35H49N5O4S) with methyl α-d-mannopyranoside was Ka = 858 M?1 with 1:1 stoichiometry. Formation of hydrogen bonds in binding between symmetrical tripodal receptor type compound C and sugars was suggested by the large negative values of ?H° (=?34 to ?511 kJ mol?1). In a comparison of each set of α- and β-anomers of some monosaccharides (methyl α/β-d-galactopyranoside, methyl α/β-d-glucopyranoside, and methyl α/β-l-fucopyranoside), compound C showed that the binding constant of β-anomer was larger than that of the corresponding α-anomer, indicating higher β-anomer selectivity. The calculated energy-minimized structure of the complex of compound C with guest methyl α-d-mannopyranoside is also presented. The experimental results obtained from this work indicated that symmetrical tripodal receptor type TAEA derivative C has a lectin-like carbohydrate recognition property.  相似文献   

10.
Amperometric detection of 3-(3,4-dihydroxyphenyl)-l-alanine (l-dopa) on a glassy carbon electrode at oxidation potential of +0.70 V in Mucuna pruriens after micro-high performance liquid chromatography separation is reported. Optimised eluent consisted of 0.87 mM 1-octane sulphonic acid sodium salt, 18.2 mM citric acid, and 82.8 mM sodium acetate with pH adjusted to 2.18 using 85% orthophosphoric acid. Detection of low concentrations of l-dopa up to 5.12 ng mL?1 was achieved. The method was employed to determine l-dopa in raw and cooked beans after water extraction through a 0.45 μm membrane with no further sample treatment.  相似文献   

11.
A new “C-potential” C(R m ) for predictions of conformations, relative stabilities of isomers, transition states, of a molecule M in solution as a function of its geometry R m is given. The potential includes all the solvent effects including the “solvophobic force” given earlier by the writer with parameters fully specified in terms of simple handbook properties of liquids. It is proved that C(R m ) can be used in statistical mechanical equations for equilibria and for activated complex rates just as though it were an ordinary potential energy surface dependent on R m only.  相似文献   

12.
β-Aminopeptidases exhibit both hydrolytic and aminolytic (peptide bond formation) activities and have only been reported in bacteria. We identified a gene encoding the β-aminopeptidase homolog from a genome database of the filamentous fungus Aspergillus oryzae. The gene was overexpressed in A. oryzae, and the resulting recombinant enzyme was purified. Apart from bacterial homologs [β-Ala-para-nitroanilide (pNA)], the enzyme preferred d-Leu-pNA and d-Phe-pNA as substrates. Therefore, we designated this gene as d-stereoselective aminopeptidase A (damA). The purified recombinant DamA was estimated to be a hexamer and was composed of two subunits with molecular masses of 29.5 and 11.5 kDa, respectively. Optimal hydrolytic activity of DamA toward d-Leu-pNA was observed at 50 °C and pH 8.0. The enzyme was stable up to 60 °C and from pH 4.0–11.0. DamA also exhibited aminolytic activity, producing d-Leu-d-Leu-NH2 from d-Leu-NH2 as a substrate. In the presence of 3.0 M NaCl, the amount of pNA liberated from d-Leu-pNA by DamA was 3.1-fold higher than that in the absence of NaCl. Thus, DamA is a halophilic enzyme. The enzyme was utilized to synthesize several hetero-dipeptides containing a d-amino acid at the N-terminus as well as physiologically active peptides.  相似文献   

13.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was cloned and overexpressed in Lactococcus lactis using a phosphate-depletion-inducible expression system. The purified B. longum l-AI was characterized using d-galactose and l-arabinose as the substrates. The enzyme was active and stable at acidic pH with an optimum at pH 6.0?C6.5. The enzyme showed the highest activity at 55?°C during a 20-min incubation at pH 6.5. The K m value was 120?mM for l-arabinose and 590?mM for d-galactose. The V max was 42?U mg?1 with l-arabinose and 7.7?U mg?1 with d-galactose as the substrates. The enzyme had very low requirement for metal ions for catalytic activity, but it was stabilized by divalent metal ions (Mg2+, Mn2+). The enzyme bound the metal ions so tightly that they could not be fully removed from the active site by EDTA treatment. Using purified B. longum l-AI as the catalyst at 35?°C, equilibrium yields of 36?% d-tagatose and 11?% l-ribulose with 1.67?M d-galactose and l-arabinose, respectively, as the substrates were reached.  相似文献   

14.
A sensitive fluorescence liquid chromatographic analytical method was developed for the simultaneous determination of carnosine enantiomers in rat plasma. The method was applied to pharmacokinetic studies. Chiral separation of carnosine enantiomers was achieved by pre-column derivatization with o-phthaldialdehyde and the thiol N-acety-l-cysteine as derivating reagents. They were separated on an ODS column and detected by fluorescence detection (λex = 350 nm, λem = 450 nm). γ-Aminobutyric acid was used as internal standard. The method was linear up to 6,000 ng mL?1 for l-carnosine, 4,000 ng mL?1 for d-carnosine. Low limit of quantitation (LLOQ) was 40 ng mL?1 for each isomer. The relative standard deviations obtained for intra- and inter-day precision were lower than 12% and the recoveries were higher than 75% for both enantiomers. The method was applied to a stereoselective study on the pharmacokinetics of carnosine after oral administration with a single dose (carnosine, 75 mg kg?1 for each isomer) to a rat. The initial data indicated that l-carnosine had a larger value of the highest plasma concentration than d-carnosine (C max 5,344 vs. 1,914 ng mL?1), and that of l-carnosine had a lower value of AUC(0?∞) and t 1/2(h) (AUC(0?∞) 5,306 vs. 6,321 ng h mL?1, t 1/2 1.43 vs. 3.37 h). Our results indicated that the pharmacokinetic of l-carnosine and d-carnosine revealed enantioselective properties significantly.  相似文献   

15.
The reactions of a racemic four-coordinate Ni(II) complex [Ni(rac-L)](ClO4)2 with l- and d-alanine in acetonitrile/water gave two six-coordinate enantiomers formulated as [Ni(RR-L)(l-Ala)](ClO4)·2CH3CN (1) and [Ni(SS-L)(d-Ala)](ClO4) (2) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclo-tetradecane, Ala? = alanine anion), respectively. Evaporation from the remaining solutions gave two four-coordinate enantiomers characterized as [Ni(SS-L)](ClO4)2 (S-3) and [Ni(RR-L)](ClO4)2 (R-3), respectively. Single-crystal X-ray diffraction analyses of complexes 1 and 2 revealed that the Ni(II) atom has a distorted octahedral coordination geometry, being coordinated by four nitrogen atoms of L in a folded configuration, plus one carboxylate oxygen atom and one nitrogen atom of l- or d-Ala? in mutually cis-positions. Complexes 1 and 2 are supramolecular stereoisomers, constructed via hydrogen bonding between [Ni(RR-L)(l-Ala)]+ or [Ni(SS-L)(d-Ala)]+ monomers to form 1D hydrogen-bonded zigzag chains. The homochiral natures of complexes 1 and 2 have been confirmed by CD spectroscopy.  相似文献   

16.
β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-β-d-xylopyranoside (4NPX), 4-nitrophenyl-α-l-arabinofuranoside (4NPA), and 1,4-β-d-xylobiose (X2) was determined on and off (k non) the enzyme at pH 5.3, which lies in the pH-independent region for k cat and k non. Rate enhancements (k cat/k non) for 4NPX, 4NPA, and X2 are 4.3?×?1011, 2.4?×?109, and 3.7?×?1012, respectively, at 25 °C and increase with decreasing temperature. Relative parameters k cat 4NPX/k cat 4NPA, k cat 4NPX/k cat X2, and (k cat/K m)4NPX/(k cat/K m)X2 increase and (k cat/K m)4NPX/(k cat/K m)4NPA, (1/K m)4NPX/(1/K m)4NPA, and (1/K m)4NPX/(1/K m)X2 decrease with increasing temperature.  相似文献   

17.
Glucose oxidase from Aspergillus niger, the specific enzyme for β-d-glucose oxidation, can also oxidize other related saccharides at very slow or negligible rates. The present study aimed to compare the kinetics of d-glucose oxidation using immobilized glucose oxidase on bead cellulose for the oxidation of related saccharides using the same biocatalyst. The significant differences were observed between the reaction rates for d-glucose and other saccharides examined. As a result, k cat/K M ratio for d-glucose was determined to be 42 times higher than d-mannose, 61.6 times higher than d-galactose, 279 times higher than d-xylose, and 254 times higher than for d-fructose and d-cellobiose. On the basis of these differences, the ability of immobilized glucose oxidase to remove d-glucose from d-cellobiose, d-glucose from d-xylose, and d-xylose from d-lyxose was examined. Immobilized catalase on Eupergit and mixed with immobilized glucose oxidase on bead cellulose or co-immobilized with glucose oxidase on bead cellulose was used for elimination of hydrogen peroxide from the reaction mixture. The accelerated elimination of d-glucose and d-xylose in the presence of co-immobilized catalase was observed. The co-immobilized glucose oxidase and catalase were able to decrease d-glucose or d-xylose content to 0–0.005% of their initial concentrations, while a minimum decrease of low oxidized saccharides d-xylose, d-cellobiose, and d-lyxose, respectively, was observed.  相似文献   

18.
The adsorption of amino acids such as l-phenylalanine and l-histidine was carried out on a series of mesoporous carbons obtained with the use ordered silicas KIT-6, SBA-16, SBA-15 as templates and furfuryl alcohol as carbon precursor. Small angle XRD analysis confirmed the ordered mesoporous structures of all materials obtained. They were also characterised by well-developed surface areas and high pore volumes. Adsorption behaviour of amino acids on ordered mesoporous carbons was investigated in potassium phosphate buffer solutions with adjustable l-phenylalanine and l-histidine concentration, ion strength, and pH. The highest sorption capacity towards the amino acids were observed at pH close to the isoelectric point of l-phenylalanine (pI = 5.48) and l-histidine (pI = 7.59). Electrostatic, hydrophobic and steric interactions had very strong effect on the adsorption of amino acids on mesoporous carbons. The amount of l-phenylalanine and l-histidine adsorbed decreased in the following sequence: CKIT-6 > CSBA-16 > CSBA-15 that was strongly related to their structure, surface areas and average pore diameters.  相似文献   

19.
Extracellular tyrosinase from Auricularia auricula RF201 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 12.6 kDa on SDS-PAGE. The optimum pH for tyrosinase activity was 7, and the enzyme was stable between pH 6 and 9. Tyrosinase has optimal activity at 40 °C and retained most of its activity between 4 and 50 °C. A. auricula tyrosinase could oxidize l-tyrosine, l-DOPA, catechol, and caffeic acid and displayed dark brown or peach color. However, the enzyme was unable to catalyze l-phenylalanine and ferulic acid. In comparison with other substrates, l-tyrosine displayed the highest affinity (K m of 0.11 mM) and the maximal reaction velocity (V max of 102.58 μmol/min). Tyrosinase activity was reduced in the presence of numerous tested compounds. Particularly SDS, it significantly inhibited enzyme activity. CuSO4 and NaCl showed an activation effect on enzyme activity, with the maximum activation found in the presence of CuSO4.  相似文献   

20.
A simple, rapid, and robust chiral HPLC method has been developed and validated for separation of the enantiomers of epinephrine, l-1-(3,4-dihydroxyphenyl)-2-(methylamino)ethanol, an antihypertensive drug, in the bulk drug. The enantiomers were resolved on an amylose-based stationary phase with n-hexane–2-propanol–methanol–trifluoroacetic acid–diethylamine 90:05:05:0.2:0.2 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. In the optimized method resolution between the enantiomers was not less than 3.0. The trifluoroacetic acid and diethylamine in the mobile phase were important for enhancing chromatographic efficiency and hence the resolution of the enantiomers. The method was extensively validated and proved to be robust. The calibration plot for the d enantiomer was highly linear over the concentration range 100–2,000 μg mL?1. The limits of detection and quantification for the d enantiomer were 0.15 and 0.45 μg mL?1, respectively. Recovery of the d enantiomer from bulk drug samples of epinephrine ranged between 99.5 and 101.5%. Epinephrine sample solution was stable for up to 48 h. The method was suitable for accurate quantitative determination of the d enantiomer in the bulk drug substance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号