首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
The solvation parameter model is used to elucidate the retention mechanism of neutral compounds on the pentafluorophenylpropylsiloxane-bonded silica stationary phase (Discovery HS F5) with methanol-water and acetonitrile-water mobile phases containing from 10 to 70% (v/v) organic solvent. The dominant factors that increase retention are solute size and electron lone pair interactions while polar interactions reduce retention. A comparison of the retention mechanism with an octadecylsiloxane-bonded silica stationary phase based on the same silica substrate and with a similar bonding density (Discovery HS C18) provides additional insights into selectivity differences for the two types of stationary phase. The methanol-water solvated pentafluorophenylpropylsiloxane-bonded silica stationary phase is more cohesive and/or has weaker dispersion interactions and is more dipolar/polarizable than the octadecylsiloxane-bonded silica stationary phase. Differences in hydrogen-bonding interactions contribute little to relative retention differences. For mobile phases containing more than 30% (v/v) acetonitrile selectivity differences for the pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica stationary phases are no more than modest with differences in hydrogen-bond acidity of greater importance than observed for methanol-water. Below 30% (v/v) acetonitrile selectivity differences are more marked owing to incomplete wetting of the octadecylsiloxane-bonded silica stationary phase at low volume fractions of acetonitrile that are not apparent for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. Steric repulsion affects a wider range of compounds on the octadecylsiloxane-bonded than pentafluorophenylpropylsiloxane-bonded silica stationary phase with methanol mobile phases resulting in additional selectivity differences than predicted by the solvation parameter model. Electrostatic interactions with weak bases were unimportant for methanol-water mobile phase compositions in contrast to acetonitrile-water where ion-exchange behavior is enhanced, especially for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. The above results are compatible with a phenomenological interpretation of stationary phase conformations using the haystack, surface accessibility, and hydro-linked proton conduit models.  相似文献   

2.
Differences in the system constants of the solvation parameter model and retention factor correlation plots for varied solutes are used to study the retention mechanism on XBridge C8, XBridge Phenyl and XTerra Phenyl stationary phases with acetonitrile–water and methanol–water mobile phases containing from 10 to 70% (v/v) organic solvent. These stationary phases are compared with XBridge C18 and XBridge Shield RP18 characterized in an earlier report using the same protocol. The XBridge stationary phases are all quite similar in their retention properties with larger difference in absolute retention explained by differences in cohesion and the phase ratio, mainly, and smaller changes in relative retention (selectivity) by the differences in individual system constants and their variation with mobile phase type and composition. None of the XBridge stationary phases are selectivity equivalent but XBridge C18 and XBridge Shield RP18 have similar separation properties, likewise so do XBridge C8 and XBridge Phenyl, while the differences between the two groups of two stationary phases is greater than the difference within either group. The limited range of changes in selectivity is demonstrated by the high coefficient of determination (>0.98) for plots of the retention factors for varied compounds on the different XBridge phases with the same mobile phase composition.  相似文献   

3.
The solvation parameter model is used to establish the contribution of cohesion, dipole-type and hydrogen-bonding interactions to the retention mechanism on an XTerra MS C18 stationary phase with acetonitrile-water, methanol-water and tetrahydrofuran-water mobile phases containing from 10 to 70% (v/v) organic solvent. Solute size and electron lone pair interactions are responsible for retention while dipole-type and hydrogen-bonding interactions result in lower retention. The volume fraction of water in the mobile phase plays a dominant role in the retention mechanism. However, the change in values of the system constants of the solvation parameter model cannot be explained entirely by assuming the principle role of the organic solvent is to act as a diluent for the mobile phase. Selective solvation of the stationary phase by the organic solvent and the ability of the organic solvent to extract water into the stationary phase, and/or the absorption of water-organic solvent complexes by the stationary phase, are important in accounting for the details revealed about the retention mechanism by the solvation parameter model. A qualitative picture of the above solvent effects, compatible with current knowledge of solvent and stationary phase properties, is presented.  相似文献   

4.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an ethyl-bridged, ocatadecylsiloxane-bonded superficially porous silica stationary phase (Kinetex EVO C18) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not methanol–water mobile phase compositions. Compared with a superficially porous octadecylsiloxane-bonded silica stationary phase (Kinetex C18) with a similar morphology but different topology statistically significant differences in selectivity at the 95% confidence level are observed for neutral compounds that vary by size and hydrogen-bond basicity with other intermolecular interactions roughly similar. These selectivity differences are dampened with acetonitrile–water mobile phases, but are significant for methanol–water mobile phase compositions containing <30% (v/v) methanol. A comparison of a totally porous ethyl-bridged, octadecylsiloxane-bonded silica stationary phase (XBridge C18) with Kinetex EVO C18 indicated that they are effectively selectivity equivalent.  相似文献   

5.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.  相似文献   

6.
Differences in the system constants of the solvation parameter model, discontinuities in retention factor plots (log k against volume fraction of organic solvent) and retention factor correlation plots are used to study the retention mechanism on XTerra MS C18, XBridge C18 and XBridge Shield RP18 stationary phases with acetonitrile–water and methanol–water mobile phases containing from 10 to 70% (v/v) organic solvent. Wetting of XBridge C18 at 10 and 20% (v/v) acetonitrile is incomplete and is responsible for small changes in the retention mechanism. The intermolecular interactions responsible for retention on XTerra MS C18 and XBridge C18 are similar with minor differences in cavity formation and hydrogen-bonding interactions responsible for small selectivity differences. On the other hand, for bulky solutes there are large changes in retention at low volume fractions of organic solvent (<40% v/v) associated with steric repulsion on the XTerra MS C18 stationary phases that is absent for XBridge C18. Selectivity differences are more apparent for XBridge C18 and XBridge Shield RP18. For acetonitrile-water mobile phases cavity formation in the solvated XBridge Shield RP18 is slightly more difficult and hydrogen-bond acid and base interactions are more important than for XBridge C18. With methanol–water mobile phases it becomes slightly easier to form a cavity in the solvated XBridge RP18 compared with XBridge C18. In addition, the methanol-water solvated XBridge RP18 is a stronger hydrogen-bond base and more dipolar/polarizable than XBridge C18. These variations in selectivity justify the use of XBridge C18 and XBridge Shield RP18 as complementary stationary phases for method development.  相似文献   

7.
The solvation parameter model is used to elucidate the retention mechanism on a perfluorohexylpropylsiloxane-bonded (Fluophase RP) and octadecylsiloxane-bonded (Betasil C18) stationary phases based on the same silica substrate with acetonitrile–water and methanol–water mobile phase compositions. Dewetting affects the retention properties of Fluophase RP at mobile phase compositions containing less than 20% (v/v) acetonitrile or 40% (v/v) methanol. It results in a loss of retention due to an unfavorable change in the phase ratio as well as changes in specific intermolecular interactions. Steric repulsion reduces retention of bulky solutes on fully solvated Betasil C18 with methanol–water (but not acetonitrile–water) mobile phase compositions but is not important for Fluophase RP. The retention of weak bases is affected by ion-exchange interactions on Fluophase RP with acetonitrile–water, and to a lesser extent, methanol-water mobile phases but these are weak at best for Betasil C18. The system constants of the solvation parameter model and retention factor scatter plots are used to compare selectivity differences for Fluophase RP, Betasil C18 and a perfluorophenylpropylsiloxane-bonded silica stationary phase Discovery HS F5 for conditions where incomplete solvation, steric repulsion and ion-exchange do not significantly contribute to the retention mechanism. Lower retention on Fluophase RP results from weaker dispersion and/or higher cohesion moderated to different extents by polar interactions since solvated Fluophase RP is a stronger hydrogen-bond acid and more dipolar/polarizable than Betasil C18. Retention factors for acetonitrile–water mobile phases are highly correlated for Fluophase RP and Betasil C18 except for compounds with a large excess molar refraction and weak hydrogen-bonding capability. Selectivity differences are more significant for methanol–water mobile phases. Retention factors on Fluophase RP are strongly correlated with those on Discovery HSF5 for acetonitrile–water mobile phases while methanol–water mobile phases retention on Fluophase RP is a poor predictor of the retention order on Discovery HS F5.  相似文献   

8.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on phenylhexylsiloxane- and pentafluorophenylpropylsiloxane-bonded superficially porous silica stationary phases (Kinetex Phenyl-Hexyl and Kinetex F5) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation exchange) are important for the retention of weak bases for acetonitrile–water mobile phases, but virtually absent for the same compounds for methanol–water mobile phases. The selectivity of the Kinetex Phenyl-Hexyl stationary phase for small neutral compounds is similar to an octadecylsiloxane-bonded silica stationary phase with similar morphology Kinetex C-18 for both methanol–water and acetonitrile–water mobile phase compositions. The Kinetex Phenyl-Hexyl and XBridge Phenyl stationary phases with the same topology but different morphology are selectivity equivalent, confirming that solvation of the interphase region can be effective at dampening selectivity differences for modern stationary phases. Small selectivity differences observed for XTerra Phenyl (different morphology and topology) confirm previous reports that the length and type of space arm for phenylalkylsiloxane-bonded silica stationary phases can result in small changes in selectivity. The pentafluorophenylpropylsiloxane-bonded silica stationary phase (Kinetex F5) has similar separation properties to the phenylhexylsiloxane-bonded silica stationary phases, but is not selectivity equivalent. However, for method development purposes, the scope to vary separations from an octadecylsiloxane-bonded silica stationary phase (Kinetex C-18) to “phenyl phase” of the types studied here is limited for small neutral compounds. In addition, selectivity differences for the above stationary phases are enhanced by methanol–water and largely suppressed by acetonitrile–water mobile phases. For bases, larger selectivity differences are possible for the above stationary phases if electrostatic interactions are exploited, especially for acetonitrile-containing mobile phases.  相似文献   

9.
T. Kowalska 《Chromatographia》1990,29(7-8):389-394
Summary In our previous publication we have introduced a new model of solute retention in RP-HPLC systems with ternary mobile phases of the B+AB1+AB2 type (B: acetonitrile or tetrahydrofuran; AB1: methanol; AB2: water). That model proposed no stoichiometric differentiation between acetonitrile and tetrahydrofuran, alternatively present in the solvent system; moreover, it made some very rough assumptions only as to the intermolecular interactions among the mobile phase constituents.This paper introduces a significant refinement to the already established retention model, which is based on the simple quantitative relationships between acetonitrile and tetrahydrofuran, and the remaining components of the ternary liquid system. The refined model is tested with same experimental data.  相似文献   

10.
The solvation parameter model is used to establish the contribution of cohesion, dipole-type, and hydrogen-bonding interactions to the retention mechanism on Synergi Hydro-RP, Fusion-RP, and Polar-RP reversed-phase columns with methanol–water mobile phases containing from 10–70% (v/v) methanol. Large changes in relative retention on the compared columns can result from steric resistance, differences in the phase ratios, and from dewetting at low methanol compositions while changes in intermolecular interactions are responsible for smaller changes at a fixed mobile phase composition. For Synergi Hydro-RP and Polar-RP changing methanol for acetonirile is more powerful for affecting changes in retention order than changing the stationary phase. The three Synergi columns show useful selectivity differences for method development when compared with 13 other modern reversed-phase columns representing a selection of different stationary phase chemistries. The results from this study indicate the limitations of classifying reversed-phase columns by the retention of prototypical compounds to define specific retention mechanisms.  相似文献   

11.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxanebonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50 % (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing π- and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30 % (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1 % (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

12.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxane-bonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50% (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing - and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30% (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1% (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

13.
The retention of fifty structurally different compounds has been studied using linear solvation energy relationships. Investigations were performed with the use of six various stationary phases with two mobile phases (50/50?% v/v methanol/water and 50/50?% v/v acetonitrile/water). Packing materials were home-made and functionalized with octadecyl, alkylamide, cholesterol, alkyl-phosphate and phenyl molecules. This is the first attempt to compare all of these stationary phases synthesized on the same silica gel batch. Therefore, all of them may be compared in more complex and believable way, than it was performed earlier in former investigations. The phase properties (based on Abraham model) were used to the classification of stationary phases according to their interaction properties. The hydrophilic system properties s, a, b indicate stronger interactions between solute and mobile phase for most of the columns. Both e and v cause greater retention as a consequence of preferable interactions with stationary phase by electron pairs and cavity formation as well as hydrophobic bonds. However, alkyl-phosphate phase has different retention properties, as it was expressed by positive sign of s coefficient. It may be concluded that most important parameters influencing the retention of compounds are volume and hydrogen bond acceptor basicity. The LSER coefficients showed also the dependency on the type of organic modifier used as a mobile phase component.  相似文献   

14.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsilioxane-bonded silica stationary phase, Ascentis TM C18, with acetonitrile-water and methanol-water mobile phase compositions containing 10–70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (1), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent compositions with a discontinuity at low organic solvent mobile phase compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes excluded from the models. The overwhelming number of residual values, here defined as the difference between experimental and model predicted retention factors for the excluded solutes, could be explained by contributions from steric repulsion. The latter defined as the inability of solutes to fully insert themselves into the solvated stationary phase because of their size or conformation. Steric repulsion resulted in a systematic reduction in retention compared with predicted values for the fully inserted solute. The bonding density of the stationary phase; the type and composition of the mobile phase; and the size, conformation, type and number of functional groups on the solute are shown to affect the contribution of steric repulsion to the retention mechanism.  相似文献   

15.
The effect of different modifiers in subcritical fluid chromatography (SubFC) on interactions between solute and porous graphitic carbon (PGC) and between solute and carbon dioxide-modifier mobile phases was studied by the use of linear solvation energy relationships (LSERs). This study was performed to allow efficient optimization of the composition of the carbon dioxide-modifier mobile phase in regard of the chemical nature of the solutes to be separated. With all modifiers tested (methanol, ethanol, n-propanol, isopropanol, acetonitrile, tetrahydrofuran and hexane), the solute/stationary phase interactions are greater than the solute/mobile phase ones. Dispersion interactions and charge transfer between electron donor solute and electron acceptor PGC mainly explain the retention on this surface, whatever the modifier. These interactions are quite constant over the range of modifier percentage studied (5-40%). For acidic compounds, the retention variation is mainly related to the change in the basic character of mobile and stationary phase due to the variation of modifier percentage. Changes in eluting strength are mostly related to adsorption of mobile phase onto the PGC with methanol and acetonitrile, and to the increase of dispersion interactions between the solute and the mobile phase for other modifiers. Relationships between varied selectivities and solvation parameter values have been studied and are discussed in this paper.  相似文献   

16.
Molecular simulations of water/acetonitrile and water/methanol mobile phases in contact with a C(18) stationary phase were carried out to examine the molecular-level effects of mobile phase composition on structure and retention in reversed-phase liquid chromatography. The simulations indicate that increases in the fraction of organic modifier increase the amount of solvent penetration into the stationary phase and that this intercalated solvent increases chain alignment. This effect is slightly more apparent for acetonitrile containing solvents. The retention mechanism of alkane solutes showed contributions from both partitioning and adsorption. Despite changes in chain structure and solvation, the molecular mechanism of retention for alkane solutes was not affected by solvent composition. The mechanism of retention for alcohol solutes was primarily adsorption at the interface between the mobile and stationary phase, but there were also contributions from interactions with surface silanols. The interaction between the solute and surface silanols become very important at high concentrations of acetonitrile.  相似文献   

17.
Studzi&#;ska  S.  Buszewski  B. 《Chromatographia》2012,75(21):1235-1246

The retention of fifty structurally different compounds has been studied using linear solvation energy relationships. Investigations were performed with the use of six various stationary phases with two mobile phases (50/50 % v/v methanol/water and 50/50 % v/v acetonitrile/water). Packing materials were home-made and functionalized with octadecyl, alkylamide, cholesterol, alkyl-phosphate and phenyl molecules. This is the first attempt to compare all of these stationary phases synthesized on the same silica gel batch. Therefore, all of them may be compared in more complex and believable way, than it was performed earlier in former investigations. The phase properties (based on Abraham model) were used to the classification of stationary phases according to their interaction properties. The hydrophilic system properties s, a, b indicate stronger interactions between solute and mobile phase for most of the columns. Both e and v cause greater retention as a consequence of preferable interactions with stationary phase by electron pairs and cavity formation as well as hydrophobic bonds. However, alkyl-phosphate phase has different retention properties, as it was expressed by positive sign of s coefficient. It may be concluded that most important parameters influencing the retention of compounds are volume and hydrogen bond acceptor basicity. The LSER coefficients showed also the dependency on the type of organic modifier used as a mobile phase component.

  相似文献   

18.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号