共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and selective liquid chromatography tandem mass spectrometry method for quantitative determination of lobeline hydrochloride in rabbit plasma was developed and validated. After addition of triazolam as internal standard, protein precipitation by acetonitrile was used as sample preparation. Chromatographic separation was achieved on a Zorbax SB-C18 column with acetonitrile-0.1% formic acid as mobile phase with gradient elution. Electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 338.1 → 315.8 for lobeline hydrochloride and m/z 342.9 → 308.0 for the IS. Calibration plots were linear over the range of 2–500 ng mL ?1 for lobeline hydrochloride in plasma. Lower limit of quantitation for lobeline hydrochloride was 2 ng mL ?1. Mean recovery of lobeline hydrochloride from plasma was in the range 97.5–102.3%. RSD of intra-day and inter-day precision were both <9%. This developed method is successfully used in pharmacokinetic study of lobeline hydrochloride in rabbit. 相似文献
2.
A rapid and sensitive method was developed and validated for the determination of MCYST (microcystin)-RR, -LR, and [Dha 7] MCYST-LR in rat plasma by liquid chromatography-tandem mass spectrometry. The analytes were extracted from rat plasma by protein precipitation, followed by solid-phase extraction. Liquid chromatography with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MCYST-RR, -LR, and [Dha 7] MCYST-LR in rat plasma. The recoveries for each analyte in rat plasma ranged from 70.8 to 88.7%. The calibration curve was linear within the range from 0.005 to 1.25 μg mL ?1. The limit of detection were 1.4, 1.0, 0.6 ng mL ?1 for MCYST-RR, -LR, and [Dha 7] MCYST-LR. The overall precision was determined on three different days. The values for within- and between-day precision in rat plasma were within 15%. This method was applied to the identification and quantification of microcystins in rat plasma with acute exposure of microcystins via intravenous injection. 相似文献
3.
A rapid, simple, sensitive and specific liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous quantification of itopride hydrochloride and domperidone in human plasma. Both drugs were extracted by liquid–liquid extraction with ethyl acetate and saturated borax solution. The chromatographic separation was performed on a reversed-phase C18 column with a mobile phase of water–methanol (2:98, v/v) containing 0.5% formic acid. The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The assay exhibited linearity over the concentration range of 3.33–500 ng mL−1 for itopride hydrochloride and 3.33–100 ng mL−1 for domperidone in human plasma. The precursor to product ion transitions of m/z 359.1–72.3 and 426.0–147.2 were used to measure itopride hydrochloride and domperidone respectively. The method was found suitable for the analysis of plasma samples collected during phase 1 pharmacokinetics study of itopride HCl 50 mg and domperidone 20 mg in 12 healthy volunteers after single oral doses of the combination drug. 相似文献
4.
A rapid, simple, sensitive and specific liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous quantification of itopride hydrochloride and domperidone in human plasma. Both drugs were extracted by liquid–liquid extraction with ethyl acetate and saturated borax solution. The chromatographic separation was performed on a reversed-phase C18 column with a mobile phase of water–methanol (2:98, v/ v) containing 0.5% formic acid. The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The assay exhibited linearity over the concentration range of 3.33–500 ng mL ?1 for itopride hydrochloride and 3.33–100 ng mL ?1 for domperidone in human plasma. The precursor to product ion transitions of m/ z 359.1–72.3 and 426.0–147.2 were used to measure itopride hydrochloride and domperidone respectively. The method was found suitable for the analysis of plasma samples collected during phase 1 pharmacokinetics study of itopride HCl 50 mg and domperidone 20 mg in 12 healthy volunteers after single oral doses of the combination drug. 相似文献
5.
A simple and rapid LC–MS–MS assay was developed and validated for the quantitative determination of pitavastatin in human plasma. Sample pretreatment involved simple protein precipitation by addition of acetonitrile. Separation was on an Agilent 1.8 μm Zorbax SB-C18 column (150 mm × 4.6 mm) at 25 °C using isocratic elution with methanol–0.1% formic acid in water (85:15, v/v) at a flow rate of 0.4 mL min ?1. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the ion transitions m/z 422.0 → 290.1 for pitavastatin, and m/z 330.1 → 192.1 for paroxetine (IS). LC–MS–MS was found to improve the quantitation of pitavastatin in plasma and was successfully applied in pharmacokinetic studies. 相似文献
6.
A sensitive, high-throughput and economic liquid chromatographic method for determination of fenofibric acid in human plasma was developed and validated by ultraviolet detection and tandem mass spectrometry, then applied in pharmacokinetic study to investigate Lipanthyl™ 200 mg MC bioavailability under food and fasting conditions. Fenofibric acid with 2-chloro fenofibric acid-d6 (internal standard) was extracted from 100 µL of human plasma by acetonitrile in a single extraction step. 25 and 2 µL from supernatant were injected onto ACE column, 50 mm, 5 micron with 4.6 mm inner diameter for LC–UV and 2.1 mm for LC–MS/MS, and both systems were eluted isocratically by water:methanol:formic acid (35:65:0.1, v/v/v), with a constant flow rate of 1 mL min−1. The established calibration curve was linear between 0.05–20 µg mL−1, and the within- and between-day precisions were all below 13 % in both LC–MS/MS and LC–UV systems during validation, and accuracies ranged between 91 and 112 %. Twenty-eight healthy adult subjects participated in this clinical study, and the pharmacokinetic parameters including coefficient of variation were calculated and discussed. A dramatic decrease in C
max and AUC0-72 (3.63- and 1.85-fold, respectively) were observed for Lipanthyl™ MC under fasting conditions with more variable inter subject measurements comparing to the fed state. 相似文献
8.
A sensitive and selective liquid chromatographic tandem mass spectrometric (LC–MS–MS) method was developed for simultaneous identification and quantification of tamsulosin and dutasteride in human plasma, which was well applied to clinical study. The method was based on liquid–liquid extraction, followed by an LC procedure with a Gemini C-18, 50 mm × 2.0 mm (3 μm) column and using methanol:ammonium formate (97:3, v/ v) as the mobile phase. Protonated ions formed by a turbo ionspray in positive mode were used to detect analytes and internal standard. MS–MS detection was by monitoring the fragmentation of 409.1 → 228.1 ( m/ z) for tamsulosin, 529.3 → 461.3 ( m/ z) for dutasteride and 373.2 → 305.3 ( m/ z) for finasteride (IS) on a triple quadrupole mass spectrometer. The lower limit of quantification for both tamsulosin and dutasteride was 1 ng mL ?1. The proposed method enables the unambiguous identification and quantification of tamsulosin and dutasteride for clinical drug monitoring. 相似文献
9.
A simple, sensitive, selective and rapid liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous separation and quantitation of atenolol and chlorthalidone in human plasma using metoprolol and hydrochlorothiazide as internal standard. Following solid phase extraction, the analytes were separated by an isocratic mobile phase on a reversed-phase C 18 column and analyzed by MS in the multiple reaction-monitoring mode (atenolol in positive and chlorthalidone in the negative ion mode). The limit of quantitation for this method was 10 and 15 ng mL ?1 and the linear dynamic range was generally 10–2,050 ng mL ?1 and 15–3,035 ng mL ?1 for atenolol and chlorthalidone, respectively. 相似文献
10.
A sensitive, simple and rapid LC–MS–MS method has been developed and validated for the simultaneous determination of l-dopa and l-dopa n-pentyl ester hydrochloride in rat plasma in the present study. The analytes were separated on a C 18 column (5 μm, 2.1 × 150 mm) with a security guard C 18 column (5 μm, 4 × 20 mm) and a triple-quadrupole mass spectrometer was applied for detection. The method was linear over the concentration ranges of 25–5,000 ng mL ?1 for l-dopa and 12.5–2,500 ng mL ?1 for l-dopa n-pentyl ester hydrochloride. Finally, the method was successfully applied to support the pharmacokinetic study. 相似文献
11.
A sensitive LC–MS–MS method with electrospray ionization has been developed for determination of nikethamide in human plasma. After addition of atropine as internal standard, liquid–liquid extraction was used to produce a protein-free extract. Chromatographic separation was achieved on a 150 mm × 2.1 mm, 5 μm particle, Agilent Zorbax SB-C 18 column, with 45:55 ( v/v) methanol–water containing 0.1% formic acid as mobile phase. LC–MS–MS was performed in multiple reaction monitoring mode using target fragment ions m/z 178.8 → 107.8 for nikethamide and m/z 289.9 → 123.8 for the internal standard. Calibration plots were linear over the range of 20.0–2,000 ng mL ?1. The lower limit of quantification was 20.0 ng mL ?1. Intra-day and inter-day precisions were better than 4.2 and 6.1%, respectively. Mean recovery of nikethamide from human plasma was in the range 65.3–71.1%. 相似文献
12.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/ v) and separated on a C 18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/ v). The assay was linear in the concentration range between 0.05 and 25 μg mL ?1 for paracetamol and 10–5,000 ng mL ?1 for caffeine, with the lower limit of quantification of 0.05 μg mL ?1 and 10 ng mL ?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma. 相似文献
13.
Flupentixol and an internal standard, loperamide were extracted from human plasma by liquid–liquid extraction and analyzed on a Thermo Hypersil HyPURITY C18 column, with 10 mM ammonium acetate–acetonitrile–methanol (26:62:12, v/v/v) as mobile phase, coupled with electrospray ionization mass spectrometry (ESI–MS). The protonated analyte was quantified by selected-ion monitoring (SIM) with a quadrupole mass spectrometer in a positive-ion mode. The calibration curve was linear ( r = 0.9990) over the concentration range: 0.039–2.5 ng mL ?1. Intra-day and inter-day precision (RSD%) were less than 13.05%. The established method was successfully applied for the determination of pharmacokinetics of flupentixol in human plasma. 相似文献
14.
A rapid and sensitive LC–MS–MS method was developed and validated for the determination of asiaticoside in rat plasma. Asiaticoside was extracted by protein precipitation with acetonitrile, and separated on a C 18 column. The total analytical time was relatively short (4 min), and the limit of quantification was 38 ng mL ?1 using 100 μL of rat plasma. Asiaticoside and the internal standard (felodipine) were monitored in the multi-reaction-monitoring mode as follows: m/z 957.4 → 469.3 and m/z 382.2 → 145.1, respectively. Calibration was linear over a concentration range from 38 to 7,600 ng mL ?1, and the correlation coefficient was greater than 0.998. The recoveries of asiaticoside from plasma were better than 85%, and RSDs of inter-day and intra-day assays were below 10.1%. The method is sensitive and specific, and suitable for pharmacokinetic studies of asiaticoside in rats. 相似文献
15.
A selective, rapid and sensitive liquid chromatography tandem mass spectrometry method has been developed for the simultaneous determination of ramipril and ramiprilat in human plasma using enalapril as the internal standard via one-step extraction with ethyl acetate under acidic condition. The analysis was carried out on a Diamonsil C 18 column (150 mm × 4.6 mm i.d., 5 μm) with a mobile phase consisting of 1% formic acid-acetonitrile (25:75, v/v) at a constant flow rate of 0.5 mL min ?1. The detection was performed on a triple-quadruple tandem mass spectrometer by selective reaction monitoring mode via electrospray ionization. Linear calibration curves of ramipril and ramiprilat were obtained in the concentration range of 0.107–107.0 and 0.262–105.0 ng mL ?1, respectively. The intra- and inter-day precision (RSD) values were below 8.2 and 4.8% for ramipril, 10.4 and 12.3% for ramiprilat, and accuracy (RE) were within ±5.5 and ±3.2%, respectively at all QC levels. The method was utilized to support clinical pharmacokinetic studies in healthy volunteers following oral administration of ramipril tablets. 相似文献
16.
A convenient, selective and sensitive liquid chromatographic-electrospary ionization mass spectrometry (LC–ESI–MS) method
was developed and validated to determine lovastatin in human plasma. The analyte was extracted from human plasma samples by
typical liquid–liquid extraction, separated on a C 18 column by using the mobile phase consisting of water–methanol (13:87, v/v). Simvastatin was used as the internal standard (IS). The method was linear within the range of 0.1–20 ng mL −1. The lower limit of quantification (LLOQ) was 0.1 ng mL −1. The intra- and inter-run precision, calculated from quality control (QC) samples was less than 10.2%. The accuracy as determined
from QC samples was in the range of 99.3–102.9% for the analyte. The mean recoveries for lovastatin and IS were 84.8 and 88.0%,
respectively. The method was successfully applied for evaluation of the pharmacokinetic of lovastatin in healthy volunteers. 相似文献
17.
To evaluate the pharmacokinetics of a novel analogue of ginkgolide B, 10- O-dimethylaminoethylginkgolide B (XQ-1) in rat plasma in pre-clinical studies, a sensitive and specific liquid chromatographic
method with electrospray ionization mass spectrometry detection (LC–ESI–MS) was developed and validated. After a simple extraction
with ethyl acetate, XQ-1 was analyzed on a Shim-pack C18 column with a mobile phase of a mixture of 1 μmol L −1 ammonium acetate containing 0.02% formic acid and methanol (55:45, v/ v) at a flowrate of 0.3 mL min −1. Detection was performed in selected ion monitoring (SIM) mode using target ions at [M + H] +
m/ z 496.05 for XQ-1 and m/ z 432.10 for the internal standard (lafutidine). Linearity was established for the concentration range from 2 to 1,000 ng mL −1 . The extraction recoveries ranged from 86.0 to 89.9% in plasma at concentrations of 5, 50, and 500 ng mL −1. The lower limit of quantification was 2 ng mL −1 with 100 μL plasma. The validated method was successfully applied to a pharmacokinetic study after intragastic administration
of XQ-1 mesylate in rats at a dose of 20 mg kg −1. 相似文献
18.
An LC–MS–MS method was developed for measuring acetylcholine (ACh) in an aqueous medium using reversed-phase ion-pair chromatography, electrospray ionization on a quadrupole ion trap instrument and a tetradeuterated analogue (ACh-1,1,2,2-d4) as an internal standard. A rapid separation was achieved on a 5-cm long octadecylsilica column (2.1 mm i.d.) by employing heptafluorobutyric acid (0.1% v/v) as an ion-pairing agent and requiring 10% v/v acetonitrile in 20 mM ammonium formate buffer under isocratic elution at 200 μl min−1 flow rate. The instrument’s response was calibrated with samples containing known mole ratios of ACh and ACh-1,1,2,2-d4 in an artificial cerebrospinal fluid, which afforded the conclusion that analyte concentrations could be determined by multiplying the measured analyte to internal standard ion-current ratio with the known molar concentration of the ACh-1,1,2,2-d4 added. The rapid and simple assay was tested by measuring the basal neurotransmitter concentration in rat brain microdialysates without the use of a cholinesterase inhibitor upon sample collection. 相似文献
19.
A sensitive, selective, and simple liquid chromatography-tandem mass spectrometry method has been developed for the simultaneous separation and determination of isosorbide dinitrate and its active metabolite, isosorbide 5-mononitrate, in human plasma. Topiramate was used as the internal standard. Sample preparation consisted of a simple one-step liquid–liquid extraction with ethylacetate without pH adjustment. The method was fully validated with respect to linearity, sensitivity, specificity, recovery, accuracy, and precision. Isosorbide dinitrate and isosorbide 5-mononitrate were stable in standard solution and in plasma samples under storage and processing conditions. The assay was successfully applied to the pharmacokinetic study of isosorbide dinitrate and isosorbide 5-mononitrate in human plasma. 相似文献
20.
A rapid liquid chromatographic method with electrospray ionization tandem mass spectrometric detection has been developed and validated for quantification of quetiapine in heparinized human plasma. Plasma samples, without a drying and reconstitution step, were extracted by solid-phase extraction and eluted with acetonitrile. The analyte and zolpidem tartrate (internal standard, IS) were chromatographed on a C 18 column; the mobile phase was 85:15 ( v/ v) acetonitrile–5 mM ammonium formate, pH adjusted to 4.5 with formic acid, at a flow rate of 0.5 mL min ?1. The retention times of quetiapine and the IS were 1.25 and 1.05 min, respectively, and the run time was 1.8 min per sample. Selected reaction monitoring of MH + at m/ z 384.12 and 308.11 resulted in stable fragment ions with m/ z 253.02 and 235.09 for quetiapine and the IS, respectively. Response was a linear function of concentration in the range 1.0–240.0 ng mL ?1, with r ≥ 0.9994. Recovery of quetiapine and the IS ranged from 74.82 to 85.57%. The assay has excellent characteristics and has been successfully used for analysis of quetiapine in healthy human subjects in a bioequivalence study. 相似文献
|