首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the results of the investigation of the specific heat of the ferromagnetic Heusler Ni2MnSn, Ni2MnSb, NiMnSb and antiferromagnetic CuMnSb alloys. The low-temperature behaviour of the specific heat may be described as C=γT+βT3 for ferromagnetic compounds and as C=γT+δ T2+βT3 for antiferromagnetic CuMnSb. The values of the density of states from the heat capacity measurements are higher than those from electronic band structure calculations. Debye temperatures are in a good agreement with those obtained from thermal expansion measurements. The Grüneisen parameter is calculated for Ni2MnSn and CuMnSb from the magnetic contribution to the specific heat in the vicinity of TC or TN.  相似文献   

2.
The specific heat of superconducting oxide compound, YBa2Cu3O7 ?x , is studied using a quasi-adiabatic calorimeter from 4.2 to 60 K. The analysis of the specific heat data below 15 K gives a value of 17 mJ/mole K2 for the electronic heat capacity coefficient. The value ofθ D(0) is determined to be 397±8 K. The variation ofθ D with temperature was calculated in the temperature range 4.2 to 60 K.  相似文献   

3.
The specific heat and magnetic susceptibility of the transition metal oxide ReO3 have been measured. The specific heat results give a Debye temperature ΘD = 460 ± 10 K and an electronic specific heat coefficient γ = 6.45 ± 0.07 cal/mole K2 which are in good agreement with similar measurements on the cubic sodium tungsten bronzes. The magnetic susceptibility and the electronic contribution to the specific heat are within a few percent of the corresponding parameters calculated from the free electron model with one electron per unit cell. Our results show that ReO3 behaves much like a simple metal. No experimental evidence for narrow d-band effects was observed.  相似文献   

4.
The contribution of the textures in the B-phase of superfluid 3He to the specific heat has been calculated. The specific heat is found to be divergent near Tc.  相似文献   

5.
The specific heat of single phase YBa2Cu3O7-δ has been measured using non-adiabatic method between 4.2K and 120K. There is a specific heat anomaly Δc at 90K (about 3.2% of total specific heat) approximately, due to superconducting transition. From the measured value of ΔC and transition temperature Tc, the electronic density of state at Fermi level N(EF) and Sommerfeld parameter γ calculated are 2.55±0.30states/eV.Cu-atom and 2.77±0.30 mJ/mole.K2, respectively. The experimental result of N(EF) is consistent with that of the band calculation by Mattheiss. The Debye temperature above Tc in this material deduced from Debye function is about 340K. Below 20K, the relation C=γ'T+βT3 is satisfied. But the value of γ' is smaller. That means, most of the electrons have formed superconducting Cooper pairs which give no contribution to specific heat below 20K.  相似文献   

6.
Using the spectroscopically derived crystal field parameters for Yb(C2H5SO4)3. 9H2O and Er3+: YA1G, the temperature dependence of Schottky specific heat, paramagnetic susceptibility, magnetic anisotropy and μeff has been calculated over a temperature range 5–400°K. The hyperfine interaction parameters for 171Yb3+, 173Yb3+ and 167Er3+ systems are also obtained and in turn used to estimate the nuclear specific heat. The nice agreement obtained for susceptibility and specific heat of Yb(C2H5SO4)3. 9H2O at very low temperatures confirms the accuracy of CEF parameters employed and the neglect of exchange interaction. However, for Er3+: YA1G, the CEF parameters are adequate to explain the bulk thermal and magnetic properties but not the g-values.  相似文献   

7.
Temperature dependences of the specific heat C and the magnetic susceptibility χ of Na1?x V2O5 single crystals (x=0, 0.01, 0.02, 0.03, and 0.04) are studied. In NaV2O5, the transition to the spin-gap state (T c =34 K) is accompanied by a sharp decrease in χ, while C exhibits a λ-shaped anomaly. At low temperatures, the specific heat of NaV2O5 is approximated by the sum of phonon ~T 3 and magnon ~exp(?Δ/T) contributions, which makes it possible to estimate the Debye temperature ΘD=336 K and the gap in the magnetic excitation spectrum Δ=112 K. With the departure from stoichiometry, the anomalies observed in the behavior of χ and C are spread and shifted to lower temperatures. The low-temperature specific heat of nonstoichiometric samples is determined by the sum of phonon and magnon components and the contribution due to the presence of defects. The values of magnetic entropy characterizing the phase transitions in Na1?x V2O5 are calculated.  相似文献   

8.
Specific heat studies of the high-Tc superconducting compound YBa2Cu3O7−x with bulk transition temperature at 92K are reported. A distinct anomaly of electronic origin in the specific heat is observed with granular-like behavior corresponding to a Sommerfeld constant γ = 7±2mJ(moleCuK2)±1 Debye temperature (φo ≈ 400K) is obtained by fitting the experimental data with the theoretical Debye specific heat.  相似文献   

9.
The specific heat of virteous B2O3 has been measured between 50 mK and 1 K. The excess to the calculated acoustic term is found to vary as T1.45 below 0.7K as opposed to the linear law generally observed. This may be attributed to the particular structure of this glass.  相似文献   

10.
A correlation between the second critical field Hc2 of the helix to paramagnetic transition and the magnetic specific heat C-peak was found in ZnCr2−xAlxSe4 spinel single crystals with x=0.15, 0.23. The specific heat peak is anomalously sharp for all finite magnetic fields used here and this points to a first order magneto-structural transition (from cubic to tetragonal symmetry). The C(T)-peak is increasingly suppressed as the external field increases. Approaching the Neel temperature TN, a broad ac-magnetic susceptibility peak is observed for zero dc-magnetic field. That peak does not show an energy loss and thus points towards a return to a second order type of transition. The magnetic contribution to the specific heat displays a sharp peak at TN and is maximal at the spin fluctuation temperature Tsf=34 K. Tsf is related to the maximum of the magnetic susceptibility at Tm=40 K (at 50 kOe) in the spin fluctuation region, as evidenced by the entropy exceeding 90% of the entropy calculated classically for the complete alignment of the Cr spins, (2−x)R ln(2S+1). The X-ray photoelectron spectroscopy (XPS) data indicate that Al-substitution does not affect Cr3+ 3d3 electronic configuration.  相似文献   

11.
The contributions of long-wavelength spin fluctuations to the specific heat of Fermi liquids is consistently calculated on the basis of the Landau theory of Fermi liquids. More satisfactory estimations of the Landau parameter F1a for liquid 3He are obtained.  相似文献   

12.
The specific heat (C) of bi-layered manganites La2−2xSr1+2xMn2O7 (x=0.3 and 0.5) is investigated for the ground state of low temperature excitations. A T3/2 dependent term in the low temperature specific heat (LTSH) is identified at zero magnetic field and suppressed by magnetic fields for x=0.3 sample, which is consistent with a ferromagnetic metallic ground state. For x=0.5 sample, a T2 term is observed and is consistent with a two-dimensional (2D) antiferromagnetic insulator. However, it is almost independent of magnetic field within the range of measured temperature (0.6-10 K) and magnetic field (6 T).  相似文献   

13.
We present measurements of the temperature dependence of the electrical resistivity, the thermopower and the specific heat of the hexagonal compound CeCu4Al. At high temperatures, the electrical resistivity is characterized by a nearly temperature independent behaviour, followed by a continuous increase below 100K. No maximum has been found down to 1.7 K. The thermopower shows a positive maximum at about 30 K. As in CeCu6 no negative values are observable in the range from 4.2 K up to a room temperature. The specific heat data between 7 and 15 K reveal a γ value around 280 mJ mol-1 K-2. Below this temperature range the specific heat cp/T shows a rapid rise and crosses the value of 1 J mol-1 K-2 at about 1.45 K.  相似文献   

14.
15.
On the basis of a determination of normal modes in materials consisting of periodic arrangements of macroscopic layers (of period d), the low frequency density of states and the corresponding low temperature specific heat were calculated numerically. The average temperature dependence of the latter changes in the vicinity of a characteristic temperature T0 (proportional to 1/d), from a low temperature (α0T3)- to a higher temperature (αT3+βT2)- law. Depending on the material parameters, β may be positive (especially if Stonely waves are present) or negative. The coefficients α and α0 can differ by a factor larger than 2. Characteristics of thick and thin layers and the implications of the results on the interpretation of experimental data are discussed.  相似文献   

16.
陈乐  王海鹏  魏炳波 《物理学报》2009,58(1):384-389
采用电磁悬浮落滴式量热方法测定了液态三元Ni60Cu20Fe20合金在1436—2008K温度范围内的比热,实验获得的最大过冷度达232K(0.14TL),结果表明比热值为33.27J·mol-1·K-1,并且随温度变化很小.在实验基础上,根据分子动力学方法结合嵌入原子势(EAM)和Quantum Sutton-Chen多体势(QSC)对比热进行了理论计算,揭示 关键词: 液态合金 比热 电磁悬浮 分子动力学计算  相似文献   

17.
We have carried out specific heat measurements on EuIn2P2 at high magnetic fields perpendicular to the c-axis in the hexagonal crystal structure in order to understand its thermal properties. The temperature dependence of the specific heat exhibits a clear λ-type anomaly due to a magnetic transition at , indicating that the magnetic transition is of second-order. The λ-type anomaly becomes markedly broader with increasing the magnetic field. This remarkable field-dependence is consistent with the results of previous magnetization measurements which suggest that Eu2+ magnetic moments align ferromagnetically perpendicular to the c-axis below TC. In addition, a hump in the specific heat is observed around 7 K, which can be ascribed to the Zeeman splitting of the Eu2+ multiplet by internal magnetic fields.  相似文献   

18.
The heat capacity of a single crystal of the uniaxial ferroelectric AgNa(NO2)2 was measured close to the nearly tricritical phase transition. In the ferroelectric phase a strong temperature dependence of the anomaleous specific heat is found which obeys a temperature law (θ f T)?0.494. A small latent heat was detected nearT c. The thermal behaviour of AgNa(NO2)2 is described by a Landau type theory, from which the non linear coefficientsζ andζ of the free energy expansion are derived. The thermal data fit well to the known dielectric behaviour.  相似文献   

19.
We present a detailed investigation of the specific heat of Ca3(Ru1-xMx)2O7 (M = Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasitwo-dimensional metallic state with antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-b), a Mott insulating state with G-type AFM order (G-AFM), and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mott transitions induced by Ti and Mn doping. We observed not only an anomalous large mass enhancement, but also an additional term in the specific heat, i.e., CT2, in the localized region. The CT2 term is most likely due to long-wavelength excitations with both FM and AFM components. A decrease in the Debye temperature is observed in the G-type AFM region, indicating lattice softening associated with the Mott transition.  相似文献   

20.
The equation of state for gases of point particles with logarithmic interaction is derived. The system exhibits a phase transition at a critical temperature Tc. The critical temperature is a function of the dimension of the system. A hard core must be added below Tc to prevent the system from collapsing. The specific heat diverges on both sides as |Tc - T|-2 in any dimension.For TTc there are no zeros of the grand partition function in the complex fugacity plane, for T >Tc all zeros occupy the whole negative real axis. The density of zeros will be calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号