首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

2.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

3.
A strategy for the mild deprotection of alkyl‐thiolated (6‐mercaptohexanoic acid, MHA, and 3‐mercaptopropanoic acid, MPA) gold nanoclusters (Au NCs) supported on hydroxyapatite (HAP) has been developed by employing a peroxide (tert‐butyl hydroperoxide, TBHP, or hydrogen peroxide, H2O2) as an oxidant. The thiol ligands on the supported Au NCs were removed after oxidation, and the size and integrity of the supported clusters were well‐preserved. The bare gold clusters on HAP after removal of the ligands were catalytically effective for the epoxidation of styrene and the aerobic oxidation of benzyl alcohol. These two reactions were also investigated on calcined Au NCs that were supported on HAP for comparison, and the resulting Au NCs that were prepared by using this new strategy showed superior catalytic activity.  相似文献   

4.
Herein, we report the oxidative addition of aryldiazonium salts to ligand‐supported gold(I) complexes under visible light photoredox conditions. This method provides experimental evidence for the involvement of such a process in dual gold/photoredox‐catalyzed reactions and delivers well‐defined (C,N)‐cyclometalated gold(III) species. The remarkably mild reaction conditions and the ability to widely vary the ancillary ligand make this method a potentially powerful synthetic tool to access diverse gold(III) complexes for systematic studies into their properties and reactivity. Initial studies show that these species can undergo chloride abstraction to afford Lewis acidic dicationic gold(III) species.  相似文献   

5.
In order to use H2 as a clean source of electricity, prohibitively rare and expensive precious metal electrocatalysts, such as Pt, are often used to overcome the large oxidative voltage required to convert H2 into 2 H+ and 2 e?. Herein, we report a metal‐free approach to catalyze the oxidation of H2 by combining the ability of frustrated Lewis pairs (FLPs) to heterolytically cleave H2 with the in situ electrochemical oxidation of the resulting borohydride. The use of the NHC‐stabilized borenium cation [(IiPr2)(BC8H14)]+ (IiPr2=C3H2(NiPr)2, NHC=N‐heterocyclic carbene) as the Lewis acidic component of the FLP is shown to decrease the voltage required for H2 oxidation by 910 mV at inexpensive carbon electrodes, a significant energy saving equivalent to 175.6 kJ mol?1. The NHC–borenium Lewis acid also offers improved catalyst recyclability and chemical stability compared to B(C6F5)3, the paradigm Lewis acid originally used to pioneer our combined electrochemical/frustrated Lewis pair approach.  相似文献   

6.
It is now possible to accurately synthesize thiolate (SR)‐protected gold clusters (Aun(SR)m) with various chemical compositions with atomic precision. The geometric structure, electronic structure, physical properties, and functions of these clusters are well known. In contrast, the ligand or metal atom exchange reactions between these clusters and other substances have not been studied extensively until recently, even though these phenomena were observed during early studies. Understanding the mechanisms of these reactions could allow desired functional metal clusters to be produced via exchange reactions. Therefore, we have studied the exchange reactions between Aun(SR)m and analogous clusters and other substances for the past four years. The results have enabled us to gain deep understanding of ligand exchange with respect to preferential exchange sites, acceleration means, effect on electronic structure, and intercluster exchange. We have also synthesized several new metal clusters using ligand and metal exchange reactions. In this account, we summarize our research on ligand and metal exchange reactions.  相似文献   

7.
The reactivities of the adamantane‐like heteronuclear vanadium‐phosphorus oxygen cluster ions [VxP4?xO10].+ (x=0, 2–4) towards hydrocarbons strongly depend on the V/P ratio of the clusters. Possible mechanisms for the gas‐phase reactions of these heteronuclear cations with ethene and ethane have been elucidated by means of DFT‐based calculations; homolytic C? H bond activation constitutes the initial step, and for all systems the P? O. unit of the clusters serves as the reactive site. More complex oxidation processes, such as oxygen‐atom transfer to, or oxidative dehydrogenation of the hydrocarbons require the presence of a vanadium atom to provide the electronic prerequisites which are necessary to bring about the 2e? reduction of the cationic clusters.  相似文献   

8.
Gold nanoparticles in metallic or plasmonic state have been widely used to catalyze homogeneous and heterogeneous reactions. However, the catalytic behavior of gold catalysts in non‐metallic or excitonic state remain elusive. Atomically precise Aun clusters (n=number of gold atoms) bridge the gap between non‐metallic and metallic catalysts and offer new opportunities for unveiling the hidden properties of gold catalysts in the metallic, transition regime, and non‐metallic states. Here, we report the controllable conversion of CO2 over three non‐metallic Aun clusters, including Au9, Au11, and Au36, towards different target products: methane produced on Au9, ethanol on Au11, and formic acid on Au36. Structural information encoded in the non‐metallic clusters permits a precise correlation of atomic structure with catalytic properties and hence, provides molecular‐level insight into distinct reaction channels of CO2 hydrogenation over the three non‐metallic Au catalysts.  相似文献   

9.
With Ph2CHK as an initiator, the anionic polymerization of N‐propyl‐N‐(3‐triisopropoxysilylpropyl)acrylamide ( 4 ) and N‐propyl‐N‐(3‐triethoxysilylpropyl)acryl‐amide generated polymers with predicted molecular weights and narrow molecular weight distributions (MWDs) in the presence of Et2Zn or Et3B; however, the resulting polymers obtained in the absence of such Lewis acids had very broad MWDs. The results were ascribed to the coordination of the propagating anionic end to a relatively weak Lewis acid, in which the activity of the end anion was appropriately controlled for moderate polymerization without side reactions. A well‐defined diblock copolymer of 4 and N,N‐diethylacrylamide was also prepared with the binary initiating system of Ph2CHK and Et2Zn, whereas no such block copolymer was prepared by polymerization initiated with 1,1‐diphenyl‐3‐methylpentyllithium, as the propagating anion together with the lithium ion reacted with alkoxysilyl side groups on the poly( 4 ) backbone to produce grafted polymers with high molecular weights. The hydrolysis of the alkoxysilyl side groups of poly( 4 ) in acidic water yielded an insoluble gel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2754‐2764, 2005  相似文献   

10.
The reactivity of the diaminoacetylene Pip‐C≡C‐Pip (Pip=piperidyl=NC5H10) towards phenyldichloro‐ and triphenylborane is presented. In the case of the less Lewis acidic PhBCl2, the first example of a double Lewis adduct of a vicinal dicarbenoid is reported. For the more Lewis acidic triphenylborane, coordination to the bifunctional carbene leads to a mild B?C bond activation, resulting in a syn‐1,2‐carboboration. Ensuing cis/trans isomerization yields a novel ethylene‐bridged frustrated Lewis pair (FLP). The compounds were characterized using multinuclear NMR spectroscopy, structural analysis, and mass spectrometry. Reactivity studies of both isomers with the N‐heterocyclic carbene 1,3‐dimethylimidazol‐2‐ylidene (IMe) aided in elucidating the proposed isomerization pathway. DFT calculations were carried out to elucidate the reaction mechanism. The rather low free energy of activation is consistent with the observation that the reaction proceeds smoothly at room temperature.  相似文献   

11.
12.
Lewis acid or Brønsted acid catalyzed reactions of vinylidene cyclopropanes (VDCPs), 1 , with activated carbon–nitrogen, nitrogen–nitrogen, and iodine–nitrogen double‐bond‐containing compounds have been thoroughly investigated. We found that pyrrolidine and 1,2,3,4‐tetrahydroquinoline derivatives can be formed in good yields in the reactions of VDCPs 1 with ethyl (arylimino)acetates 2 by a [3+2] cycloaddition or intramolecular Friedel–Crafts reaction pathway. Based on these results, we found that activated carbon–nitrogen and nitrogen–nitrogen double‐bond‐containing compounds, such as N‐toluene‐4‐sulfonyl (N‐Ts) imines 5 and diisopropylazodicarboxylate ( 7 ), can also react with VDCPs 1 to give [3+2] cycloaddition products in moderate to good yields in the presence of a Lewis acid. When Ntert‐butoxycarbonyl aldimine 9 was used as the substrate, six‐membered cycloaddition products 10 and 11 were formed in moderate yields in the presence of a Brønsted acid, trifluoromethanesulfonic acid (TfOH). The reactions of VDCPs 1 with N‐Ts‐iminophenyliodinane ( 12 ) were also carried out in the presence of (CuOTf)2 ? C6H6 and it was found that nitrogen‐containing indene derivatives 13 were obtained, rather than the aziridination products. Plausible mechanisms for all of these transformations are discussed, based on the obtained results.  相似文献   

13.
《中国化学》2017,35(9):1349-1365
Transition‐metal catalyzed oxidation reactions are central components of organic chemistry. On behalf of green and sustainable chemistry, molecular oxygen (O2) has been considered as an ideal oxidant due to its natural, inexpensive, and environmentally friendly characters, and therefore offers attractive academic and industrial prospects. In recent years, some powerful organic oxidation methods have been continuously developed. Among them, the use of molecular oxygen (O2) as a green and sustainable oxidant has attracted considerable attentions. However, the development of new transition metal‐catalyzed protocols using O2 as an ideal oxidant is highly desirable but very challenging because of the low standard electrode potential of O2 to reoxidize the transition‐metal catalysts. In this Account, we highlight some of our progress toward the use of transition‐metal catalyzed aerobic oxidation reactions. Through the careful selection of ligand and the acidic additives, we have successfully realized the reoxidation of Cu, Pd, Mn, Fe, Ru, Rh, and bimetallic catalysts under O2 or air atmosphere (1 atm) for the oxidative coupling, oxygenation reactions, oxidative C‐H/C‐C bond cleavage, oxidative annulation, and olefins difunctionalization reactions. Most of the reactions can tolerate a range of functional groups. These methods provide new strategies for the green synthesis of alkynes, (α ‐keto)amides/esters, ketones/diones, O/N‐heterocycles, β ‐azido alcohols, and nitriles. The high efficiency, low cost, and simple operation under air make these methodologies very attractive and practical. We will also discuss the mechanisms of these reactions which might be useful to promote the new type of aerobic oxidative reaction design.  相似文献   

14.
Investigations on the reactivity of atomic clusters have led to the identification of the elementary steps involved in catalytic CO oxidation, a prototypical reaction in heterogeneous catalysis. The atomic oxygen species O.? and O2? bonded to early‐transition‐metal oxide clusters have been shown to oxidize CO. This study reports that when an Au2 dimer is incorporated within the cluster, the molecular oxygen species O22? bonded to vanadium can be activated to oxidize CO under thermal collision conditions. The gold dimer was doped into Au2VO4? cluster ions which then reacted with CO in an ion‐trap reactor to produce Au2VO3? and then Au2VO2?. The dynamic nature of gold in terms of electron storage and release promotes CO oxidation and O? O bond reduction. The oxidation of CO by atomic clusters in this study parallels similar behavior reported for the oxidation of CO by supported gold catalysts.  相似文献   

15.
This report describes a gold(III)‐catalyzed efficient general route to densely substituted chiral 3‐formyl furans under extremely mild conditions from suitably protected 5‐(1‐alkynyl)‐2,3‐dihydropyran‐4‐one using H2O as a nucleophile. The reaction proceeds through the initial formation of an activated alkyne–gold(III) complex intermediate, followed by either a domino nucleophilic attack/anti‐endo‐dig cyclization, or the formation of a cyclic oxonium ion with subsequent attack by H2O. To confirm the proposed mechanistic pathway, we employed MeOH as a nucleophile instead of H2O to result in a substituted furo[3,2‐c]pyran derivative, as anticipated. The similar furo[3,2‐c]pyran skeleton with a hybrid carbohydrate–furan derivative has also been achieved through pyridinium dichromate (PDC) oxidation of a substituted chiral 3‐formyl furan. The corresponding protected 5‐(1‐alkynyl)‐2,3‐dihydropyran‐4‐one can be synthesized from the monosaccharides (both hexoses and pentose) following oxidation, iodination, and Sonogashira coupling sequences. Furthermore, to demonstrate the potentiality of chiral 3‐formyl furan derivatives, a TiBr4‐catalyzed reaction of these derivatives has been shown to offer efficient access to 1,5‐dicarbonyl compounds, which on treatment with NH4OAc in slightly acidic conditions afforded substituted furo[3,2‐c]pyridine.  相似文献   

16.
Ansa‐aminoborane 1 (ortho‐TMP? C6H4? BH2; TMP=2,2,6,6‐tetramethylpiperid‐1‐yl), a frustrated Lewis pair with the smallest possible Lewis acidic boryl site (? BH2), is prepared. Although it is present in quenched forms in solution, and BH2 represents an acidic site with reduced hydride affinity, 1 reacts with H2 under mild conditions producing ansa‐ammonium trihydroborate 2 . The thermodynamic and kinetic features as well as the mechanism of this reaction are studied by variable‐temperature NMR spectroscopy, spin‐saturation transfer experiments, and DFT calculations, which provide comprehensive insight into the nature of 1 .  相似文献   

17.
Since gold clusters have mostly been studied theoretically by using DFT calculations, more accurate studies are of importance. Thus, small neutral and anionic gold clusters (Aun and Aun?, n=4–7) were investigated by means of coupled cluster with singles, doubles, and perturbative triple excitations [CCSD(T)] calculations with large basis sets, and some differences between DFT and CCSD(T) results are discussed. Interesting isomeric structures that have dangling atoms were obtained. Structures having dangling atoms appear to be stable up to n=4 for neutral gold clusters and up to n=7 for anionic clusters. The relative stabilities and electronic properties of some isomers and major structures are discussed on the basis of the CCSD(T) calculations. This accurate structure prediction of small gold clusters corresponding to experimental photoelectron spectral peaks is valuable in the field of atom‐scale materials science including nanocatalysts.  相似文献   

18.
Hydrolysis of trimethylaluminum (TMA) leads to the formation of methylaluminoxanes (MAO) of general formula (MeAlO)n(AlMe3)m. The thermodynamically favored pathway of MAO formation is followed up to n=8, showing the major impact of associated TMA on the structural characteristics of the MAOs. The MAOs bind up to five TMA molecules, thereby inducing transition from cages into rings and sheets. Zirconocene catalyst activation studies using model MAO co‐catalysts show the decisive role of the associated TMA in forming the catalytically active sites. Catalyst activation can take place either by Lewis‐acidic abstraction of an alkyl or halide ligand from the precatalyst or by reaction of the precatalyst with an MAO‐derived AlMe2+ cation. Thermodynamics suggest that activation through AlMe2+ transfer is the dominant mechanism because sites that are able to release AlMe2+ are more abundant than Lewis‐acidic sites. The model catalyst system is demonstrated to polymerize ethene.  相似文献   

19.
New catalytic activity of gold/palladium alloy nanoclusters (NCs) for carbon–halogen bond activation is demonstrated. In the case of an aryl chloride, the inclusion of gold in a bimetallic catalyst is indispensable to achieve the coupling reactions. Gold has the unique effect of stabilizing palladium, such that Pd2+ leached from clusters by means of spillover of chloride during oxidative addition. The thus‐formed spillover intermediate further reacts heterogeneously in both Ullmann and Suzuki‐type coupling reactions through a new type of mechanism. In the case of an aryl bromide, Ullmann coupling occurs through the spillover of bromide, similar to that of aryl chloride. However, a significant fraction of palladium also leached, which diminished the Ullmann coupling activity of the aryl bromide and, as a result, the order of reactivity was ArCl>ArBr. With regard to the activation of the C?Br bond towards a Suzuki‐type reaction, the inclusion of a higher gold content in gold/palladium clusters stabilized palladium to prevent the leaching of Pd2+ from the clusters by means of spillover of bromide. The spillover intermediate reacts heterogeneously with PhB(OH)2, palladium‐rich gold/palladium, or pure palladium clusters; the oxidative addition of ArBr favors the extraction of palladium from the clusters, yielding Pd2+ intermediates. The extracted intermediates react homogenously (Pd2+/Pd0 catalysis) with PhB(OH)2, which results in the higher selectivity of the cross‐coupling product. An initial step to observe such unprecedented halide dependency, together with the dynamic behavior of palladium on the surface of gold is the oxidative addition of Ar?X. A detailed insight into the first oxidative addition process was also examined by quantum chemical calculations.  相似文献   

20.
Efficient, mild syntheses of the three major metabolites 2 – 4 of the important antipsychotic drug thioridazine ( 1 ) have been developed. The cardiotoxic metabolite 2 with a ring sulfoxide moiety was prepared in 96% yield by oxidation of 1 with NaIO4 under acidic conditions. Four different procedures were elaborated for the selective side‐chain sulfide oxidation of 1 to mesoridazine ( 3 ), giving rise to yields of up to 91%. Finally, sulforidazine ( 4 ) was synthesised via oxidation of the sulfoxide 3 in the presence of either KMnO4 or t‐BuOOH under basic conditions. Except for the oxidation with t‐BuOOH, all reactions took place under mild conditions within a few minutes, were nicely reproducible, and afforded medium‐to‐high yields of the desired products, which could be readily purified by column chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号