首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐temperature chlorination of pristine C98 fullerene isomers separated by HPLC from the fullerene soot afforded crystals of C98Cl22 and C98Cl20. An X‐ray structure elucidation revealed, respectively, the presence of carbon cages of the most stable C2‐C98(248) and rather unstable C1‐C98(116), which represent the first isolated pentagon rule (IPR) isomers of fullerene C98 confirmed experimentally. The chlorination patterns of the chlorides are discussed in terms of the formation of isolated C=C bonds and aromatic substructures on the fullerene cages.  相似文献   

2.
Although all fullerenes do not satisfy the classical aromaticity condition, as a result of their nonplanar nature, they experience effective stabilization due to extensive cyclic π‐electron delocalization and exhibit pronounced “spherical aromaticity”. This feature has raised the question of the opposite phenomenon, that is, the existence of antiaromatic carbon cages. Here the first experimental evidence of the existence of antiaromatic fullerenes is reported. The elusive #6094C68 was effectively captured as C68Cl8 by in situ chlorination in the gas phase during radio‐frequency synthesis. The chlorinated cage was separated by means of multistage HPLC, and its connectivity unambiguously determined by single‐crystal X‐ray analysis. Halogen‐stripped pristine #6094C68 was monitored by mass spectrometry of the chlorinated C68Cl8 cage. Quantum chemical calculations reveal the highly antiaromatic character of #6094C68, in accordance with all geometric, energetic, and magnetic criteria of aromaticity. Chlorine addition leads to substantial stabilization of the cage owing to aromatization in the resulting C68Cl8, which explains its high abundance in the primary fullerene soot. This work provides new insights into the process of fullerene formation and better understanding of aromaticity phenomena in general.  相似文献   

3.
Chlorination of C100 fullerene with a mixture of VCl4 and SbCl5 afforded C96Cl20 with a strongly unconventional structure. In contrast to the classical fullerenes containing only hexagonal and pentagonal rings, the C96 cage contains three heptagonal rings and, therefore, should be classified as a fullerene with a nonclassical cage (NCC). There are several types of pentagon fusions in the C96 cage including pentagon pairs and pentagon triples. The three‐step pathway from isolated‐pentagon‐rule (IPR) C100 to C96(NCC‐3hp) includes two C2 losses, which create two cage heptagons, and one Stone–Wales rotation under formation of the third heptagon. Structural reconstruction established C100 isomer no. 18 from 450 topologically possible IPR isomers as the starting C100 fullerene. Until now, no pristine C100 isomers have been confirmed based on the experimental results.  相似文献   

4.
The most abundant fullerenes, C60 and C70, and all the pure carbon fullerenes larger than C70, follow the isolated‐pentagon rule (IPR). Non‐IPR fullerenes containing adjacent pentagons (APs) have been stabilized experimentally in cases where, according to Euler’s theorem, it is topologically impossible to isolate all the pentagons from each other. Surprisingly, recent experiments have shown that a few endohedral fullerenes, for which IPR structures are possible, are stabilized in non‐IPR cages. We show that, apart from strain, the physical property that governs the relative stabilities of fullerenes is the charge distribution in the cage. This charge distribution is controlled by the number and location of APs and pyrene motifs. We show that, when these motifs are uniformly distributed in the cage and well‐separated from one other, stabilization of non‐IPR endohedral and exohedral derivatives, as well as pure carbon fullerene anions and cations, is the rule, rather than the exception. This suggests that non‐IPR derivatives might be even more common than IPR ones.  相似文献   

5.
《化学:亚洲杂志》2017,12(18):2379-2382
Cage transformations in fullerenes are rare phenomena which are still not fully understood. We report the first skeletal transformation of an Isolated‐Pentagon‐Rule (IPR) isomer of C78 fullerene upon high‐temperature chlorination which proceeds by six‐step Stone–Wales rearrangements affording non‐IPR, non‐classical (NC ) C78(NC 2)Cl24 with two cage heptagons, six pairs of fused pentagons, and an unprecedented loop‐like chlorination pattern. The following loss of a C2 unit results in C76(NC 3)Cl24 containing three cage heptagons.  相似文献   

6.
High‐temperature chlorination of C100 fullerene followed by X‐ray structure determination of the chloro derivatives enabled the identification of three isomers of C100 from the fullerene soot, specifically numbers 18, 425, and 417, which obey the isolated pentagon rule (IPR). Among them, isomers C1‐C100(425) and C2‐C100(18) afforded C1‐C100(425)Cl22 and C2‐C100(18)Cl28/30 compounds, respectively, which retain their IPR cage connectivities. In contrast, isomer C2v‐C100(417) gives Cs‐C100(417)Cl28 which undergoes a skeletal transformation by the loss of a C2 fragment, resulting in the formation of a nonclassical (NC) C1‐C98(NC)Cl26 with a heptagon in the carbon cage. Most probably, two nonclassical C1‐C100(NC)Cl18/22 chloro derivatives originate from the IPR isomer C1‐C100(382), although both C1‐C100(344) and even nonclassical C1‐C100(NC) can be also considered as the starting isomers.  相似文献   

7.
Although all the pure‐carbon fullerene isomers above C60 reported to date comply with the isolated pentagon rule (IPR), non‐IPR structures, which are expected to have different properties from those of IPR species, are obtainable either by exohedral modification or by endohedral atom doping. This report describes the isolation and characterization of a new endohedral metallofullerene (EMF), La2@C76, which has a non‐IPR fullerene cage. The X‐ray crystallographic result for the La2@C76/[NiII(OEP)] (OEP=octaethylporphyrin) cocrystal unambiguously elucidated the Cs(17 490)‐C76 cage structure, which contains two adjacent pentagon pairs. Surprisingly, multiple metal sites were distinguished from the X‐ray data, which implies dynamic behavior for the two La3+ cations inside the cage. This dynamic behavior was also corroborated by variable‐temperature 139 La NMR spectroscopy. This phenomenon conflicts with the widely accepted idea that the metal cations in non‐IPR EMFs invariably coordinate strongly with the negatively charged fused‐pentagon carbons, thereby providing new insights into modern coordination chemistry. Furthermore, our electrochemical and computational studies reveal that La2@Cs(17 490)‐C76 has a larger HOMO–LUMO gap than other dilanthanum‐EMFs with IPR cage structures, such as La2@D3h(5)‐C78 and La2@Ih(7)‐C80, which implies that IPR is no longer a strict rule for EMFs.  相似文献   

8.
High‐temperature chlorination of fullerene C88 (isomer 33) with VCl4 gives rise to skeletal transformations affording several nonclassical (NC) fullerene chlorides, C86(NC1)Cl24/26 and C84(NC2)Cl26, with one and two heptagons, respectively, in the carbon cages. The branched skeletal transformation including C2 losses as well as a Stone–Wales rearrangement has been comprehensively characterized by the structure determination of two intermediates and three final chlorination products. Quantum‐chemical calculations demonstrate that the average energy of the C?Cl bond is significantly increased in chlorides of nonclassical fullerenes with a large number of chlorinated sites of pentagon–pentagon adjacency.  相似文献   

9.
Like C60, C70 is one of the most representative fullerenes in fullerene science. Even though there are 8149 C70 isomers, only two of them have been found before: the conventional D5h and an isolated pentagon rule (IPR)‐violating C2v(7854). Through the use of quantum chemical methods, we report a new unconventional C70 isomer, C2(7892), which survives in the form of dimetallic sulfide endohedral fullerene Sc2S@C70. Compared with the IPR‐obeying C70 and the C2v(7854) fullerene with three pairs of pentagon adjacencies, the C2(7892) cage violates the isolated pentagon rule and has two pairs of pentagon adjacencies. In Sc2S@C2(7892)‐C70, two scandium atoms coordinate with two pentalene motifs, respectively, presenting two equivalent Sc? S bonds. The strong coordination interaction, along with the electron transfer from the Sc2S cluster to the fullerene cage, results in the stabilization of the non‐IPR endohedral fullerene. The electronic structure of Sc2S@C70 can be formally described as [Sc2S]4+@[C70]4?; however, a substantial overlap between the metallic orbitals and cage orbitals has also been found. Electrochemical properties and electronic absorption, infrared, and 13C NMR spectra of Sc2S@C70 have been calculated theoretically.  相似文献   

10.
The carbon cage of buckminsterfullerene Ih-C60, which obeys the Isolated-Pentagon Rule (IPR), can be transformed to non-IPR cages in the course of high-temperature chlorination of C60 or C60Cl30 with SbCl5. The non-IPR chloro derivatives were isolated chromatographically (HPLC) and characterized crystallographically as 1809C60Cl16, 1810C60Cl24, and 1805C60Cl24, which contain, respectively two, four, and four pairs of fused pentagons in the carbon cage. High-temperature trifluoromethylation of the chlorination products with CF3I afforded a non-IPR CF3 derivative, 1807C60(CF3)12, which contains four pairs of fused pentagons in the carbon cage. Addition patterns of non-IPR chloro and CF3 derivatives were compared and discussed in terms of the formation of stabilizing local substructures on fullerene cages. A detailed scheme of the experimentally confirmed non-IPR C60 isomers obtained by Stone–Wales cage transformations is presented.  相似文献   

11.
High‐temperature trifluoromethylation of isolated‐pentagon‐rule (IPR) fullerene C92 chlorination products followed by HPLC separation of C92(CF3)n derivatives resulted in the isolation and X‐ray structural characterization of IPR C92(38)(CF3)18 and non‐classical C92(NC)(CF3)22. The formation of C92(38)(CF3)18 as the highest CF3 derivative of the known isomer C92(38) can be expected. The formation of C92(NC)(CF3)22 was interpreted as chlorination‐promoted cage transformation of C92(38) followed by trifluoromethylation of non‐classical C92(NC) chloride. Noticeably, C92(NC)(CF3)22 shows the highest degree of trifluoromethylation among all known CF3 derivatives of fullerenes. The addition patterns of C92(38)(CF3)18 and C92(NC)(CF3)22 are discussed and compared to the chlorination patterns of C92(38)Cln compounds.  相似文献   

12.
High‐temperature chlorination of a fullerene C86 with VCl4 afforded non‐classical C84Cl30 and C82Cl30 containing one and two heptagons, respectively, in the carbon cages. Two types of C2 losses, which differ in the final arrangements of separate or fused pentagons, can occur successively in either order, producing rather flat or concave regions on the shrinked carbon cage. In the chlorination‐promoted skeletal transformation of C86 (isomer no. 16) with the loss(es) of C2 units, the structures of the starting, intermediate, and final compounds were all revealed unambiguously by X‐ray single crystal diffraction.  相似文献   

13.
Fused‐pentagons results in an increase of local steric strain according to the isolated pentagon rule (IPR), and for all reported non‐IPR clusterfullerenes multiple (two or three) metals are required to stabilize the strained fused‐pentagons, making it difficult to access the single‐atom properties. Herein, we report the syntheses and isolations of novel non‐IPR mononuclear clusterfullerenes MNC@C76 (M=Tb, Y), in which one pair of strained fused‐pentagon is stabilized by a mononuclear cluster. The molecular structures of MNC@C76 (M=Tb, Y) were determined unambiguously by single‐crystal X‐ray diffraction, featuring a non‐IPR C 2v (19138)‐C76 cage entrapping a nearly linear MNC cluster, which is remarkably different from the triangular MNC cluster within the reported analogous clusterfullerenes based on IPR‐obeying C82 cages. The TbNC@C76 molecule is found to be a field‐induced single‐molecule magnet (SMM).  相似文献   

14.
过去广泛接受#271C50Cl10是由#271C50空笼直接氯化得到.我们通过研究拓扑结构弄清了C50富勒烯之间的相互关系.利用密度泛函理论(DFT)计算从最稳定 C50富勒烯#270C50出发,通过氯化和 Stone-Wales (SW)转变获得#271C50Cl10.结果表明:氯化后最终产物是热力学最有利的,并且在有氯存在下, SW 转变的活化能垒会降低.这些结果可以解释目前的相关实验事实,暗示了#270C50空笼先氯化得到不同#270C50氯化物,再进行两次SW旋转的路径,由于活化能垒更低因而是一条更为可行的路线.  相似文献   

15.
Previously reported fused‐pentagon fullerenes stabilized by exohedral derivatization do not share the same cage with those stabilized by endohedral encapsulation. Herein we report the crystallographic identification of #4348C66Cl10, which has the same cage as that of previously reported Sc2@C66. According to the geometrical data of #4348C66Cl10, both strain relief (at the fused pentagons) and local aromaticity (on the remaining sp2‐hybrided carbon framework) contribute to the exohedral stabilization of this long‐sought 66 carbon atom cage.  相似文献   

16.
Chlorination of various HPLC fractions of C96 with a mixture of VCl4 and SbCl5 at 340–360 °C and single‐crystal X‐ray diffraction study of the products led to the identification of three new IPR isomers of C96. The C96(175) isomer forms a stable chloride, C96(175)Cl20, while chlorides of two other new isomers, C96(114) and C96(80), undergo cage shrinkage yielding C94(NC1)Cl28 and C96(NC2)Cl32 with non‐classical (NC) cages. These two NC chlorides contain, respectively, one and two heptagons flanked by pairs of fused pentagons and are stabilized by chlorine attachment to the emerging pentagon–pentagon junctions. Thus, the number of the experimentally confirmed C96 isomers has reached nine, which corroborates the empirical rule that the C6n fullerenes exhibit particularly rich isomerism.  相似文献   

17.
High‐temperature chlorination of three IPR isomers of fullerene C88, C2‐C88(7), Cs‐C88(17), and C2‐C88(33), resulted in the isolation and X‐ray structural characterization of C88(7)Cl12, C88(7)Cl24, C88(17)Cl22, and C88(33)Cl12/14. Chlorination patterns of C88(7) and C88(33) isomers are unusual in that one or more pentagons remain free from chlorination while some other pentagons are occupied by two or three Cl atoms. The addition patterns of the isolated chlorides are discussed in terms of the distribution of twelve pentagons on the carbon cages and the formation of stabilizing isolated C=C bonds and benzenoid rings.  相似文献   

18.
According to the isolated pentagon rule (IPR), for stable fullerenes, the 12 pentagons should be isolated from one another by hexagons, otherwise the fused pentagons will result in an increase in the local steric strain of the fullerene cage. However, the successful isolation of more than 100 endohedral and exohedral fullerenes containing fused pentagons over the past 20 years has shown that strain release of fused pentagons in fullerene cages is feasible. Herein, we present a general overview on fused‐pentagon‐containing (i.e. non‐IPR) fullerenes through an exhaustive review of all the types of fused‐pentagon‐containing fullerenes reported to date. We clarify how the strain of fused pentagons can be released in different manners, and provide an in‐depth understanding of the role of fused pentagons in the stability, electronic properties, and chemical reactivity of fullerene cages.  相似文献   

19.
Isolation and characterization of very large fullerenes is hampered by a drastic decrease of their content in fullerene soot with increasing fullerene size and a simultaneous increase of the number of possible IPR (Isolated Pentagon Rule) isomers. In the present work, fractions containing mixtures of C102 and C104 were isolated in very small quantities (several dozens of micrograms) by multi‐step recycling HPLC from an arc‐discharge fullerene soot. Two such fractions were used for chlorination with a VCl4/SbCl5 mixture in glass ampoules at 350–360 °C. The resulting chlorides were investigated by single‐crystal X‐ray diffraction using synchrotron radiation. By this means, two IPR isomers of C104, numbers 258 and 812 (of 823 topologically possible isomers), have been confirmed for the first time as chlorides, C1‐C104(258)Cl16 and D2‐C104(812)Cl24, respectively, while an admixture of C2‐C104(811)Cl24 was assumed to be present in the latter chloride. DFT calculations showed that pristine C104(812) belongs to rather stable C104 cages, whereas C104(258) is much less stable.  相似文献   

20.
The chlorination of HPLC fractions with pristine giant fullerenes, C102 and C104, followed by X‐ray crystallographic study of chlorides, C102(603)Cl18/20 and C104(234)Cl16–22, confirmed the presence of the most stable IPR (IPR=Isolated Pentagon Rule) isomers, C102(603) and C104(234), in the fullerene soot. The discussion concerns the chlorination patterns of polychlorides and relative stability of pristine isomers of C102 and C104 fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号