首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of 1-halocyclohexenes and 1-halo-4-methylcyclohexenes with potassium t-butoxide (t-BuOK) in dimethyl sulfoxide and tetrahydrofuran have been shown to take place by three competing dehydrohalogenation mechanisms. These are: dehydrohalogenation across the C1C6 bond to give a cyclohexyne; dehydrohalogenation across the C1C6 bond to give a 1,2-cyclohexadiene: and prototropic rearrangement to the corresponding 3-halocyclohexene, followed by β-elimination to a 1,3-cyclohexadiene. The highly strained cyclohexyne and 1,2-cyclohexadiene intermediates react with t-BuOK to give 1-t-butoxycyclohexene, which is obtained in yields ranging from 5–20% in DMSO to about 60% in THF. Competitive with the substitution reaction is dimerization of 1,2-cyclohexadiene to tricyclo[6.4.0.02,7]-dodeca-2,12-diene, and 1,2- and 1,4-cycloaddition of 1,2- and 1,3-cyclohexadiene.  相似文献   

2.
A.T. Bottini  L.L. Hilton 《Tetrahedron》1975,31(17):2003-2004
Bicyclo[3.2.1]octa-2,3-diene (2) and 1,2-cycloheptadiene (3), generated by treatment of the corresponding dichlorides 4 and 5 with magnesium, were found to undergo cycloaddition reactions with 2,3-dimethylbutadiene, styrene, and 1,3-cyclopentadiene. 2, but not 3, was also found to undergo a (2 + 2) cycloaddition reaction with cis-pentadiene. The relative reactivities of 2 and 3 with cis-pentadiene, 2,3-dimethylbutadiene, styrene, and 1,3-cyclopentadiene at 60° in THF were found to be: 0·18, —; 1·0, 1·0; 0·60, 7·5; and 4·0, 150.  相似文献   

3.
The reaction of Mo(η3-C3H4(CH3))(CH3CN)2(CO)2Cl with AgBF4 in THF yields the cationic complex [Mo(η3-C3H4(CH3))(CH3CN)2(CO)2(THF)]+[BF4], 1, whose X-ray structure has been determined. Oxo nucleophiles are capable of replacing the weakly bound THF molecule in 1 and under simultaneous loss of CH3CN the resulting complexes aggregate to oligonuclear compounds. Accordingly, the reactions with NaOMe and KOH yield [Na(THF)4]+[(η3-C3H4(CH3))(CO)2Mo(μ-OCH3)3Mo(CO)23-C3H4(CH3))], 2 and [K(18-crown-6)]+[[Mo(η3-C3H4(CH3))(CO)2]32-OH)33-OH)], 3, which were characterized by means of single crystal X-ray diffraction. Due to fluoride abstraction from BF4 the reaction of 1 with KOH also yields fluorinated derivatives of 3 but incorporation of fluorine in 3 can be avoided if AgO3SCF3 rather than AgBF4 is used to generate the cation of 1. For purposes of comparison the dinuclear complex [K(18-crown-6)]+[[Mo(η3-C3H4(CH3))(CO)2]22-F)3], 4, has been prepared, too, showing fluoride bridges and KF bonding. The chemical properties and the structures of these compounds in solution as well as their role as structural models for intermediates during molybdenum oxide catalysed propene oxidation are discussed.  相似文献   

4.
Reactions of 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3λ5-diphosphete with N? H and P? H Acidic Compounds 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3λ5-diphosphete, 1 , reacts with aniline to give by opening of the ring 2,2,4,4-tetrakis(dimethylamino)-1-phenyl-1,2λ5,4λ5-azadiphosphapenta-1,3-diene, 2 , with p-CN? C6F4? NH2 the product is 1-(4-cyano-2,3,5,6-tetrafluorophenyl)-2,2,4,4-tetrakis(dimethylamino)-1,2λ5,4λ5-azadiphosphapenta-1,3-diene, 3 . t-Butylamine or diethylamine do not react with 1 . Mesitylphosphane opens the ring system 1 forming by reduction of one phosphorus atom {[bis(dimethylamino)phosphanyl]methylidene}bis(dimethylamino)methylphosphorane, 4 . The same product 4 is obtained by reaction with phenylphosphane. The reaction products 2–4 are characterized by their nmr, mass, and ir spectra. Their way of formation is discussed. In 4 a 5J(PH), in 3 a 7J(CF) long range coupling constant could be identified.  相似文献   

5.
Thermolysis of [Ru3(CO)12] in cyclohexene for 24 h affords the complexes [Ru(CO)34-C6H8)] (1), [Ru3H2(CO)92121-C6H8)] (2), [Ru4(CO)124-C6H8)] (3) [Ru4(CO)94-C6H8)(η6-C6H6)] (4a and 4b, two isomers) and [Ru5(CO)1242-C6H8)(η4-C6H8)] (5), where 1, 3, 4a and 4b have been previously characterised as products of the thermolysis of [Ru3(CO)12] with cyclohexa-1,3-diene. The molecular structures of the new clusters 2 and 5 were determined by single-crystal X-ray crystallography, showing that two conformational polymorphs of 5 exist in the solid state, differing in the orientation of the cyclohexa-1,3-diene ligand on a ruthenium vertex.  相似文献   

6.
Reactions of diazocyclopentadiene and NBS at appropriate stoichiometries give 2,5-dibromodiazocyclopentadiene and 2,3,5-tribromodiazocyclopentadiene in 40% and 30% yields, respectively, after chromatography. These react with BrRe(CO)5 or BrMn(CO)5 (80 °C, CF3C6H5) to give (η5-1,2,3-C5H2Br3)M(CO)3 (3; M = a, Re; b, Mn) and (η5-C5HBr4)M(CO)3 (4a,b) in 75-85% yields. In the case of 4a, the intermediate η1-cyclopentadienyl complex (η1-C5HBr4)Re(CO)5 (4a) can be isolated (44%). An isomer of 3b, (η5-1,2,4-C5H2Br3)Mn(CO)3, is accessed by desilylating previously reported (η5-1,2,4-C5(SiMe3)2Br3)Mn(CO)3 with CsF/MeOH (85%). The reaction of tetrabromodiazocyclopentadiene and BrRe(CO)5 at 80 °C in CF3C6H5 gives the η1-cyclopentadienyl complex (η1-C5Br5)Re(CO)5 (5a, 74%) which cannot be induced to decarbonylate to (η5-C5Br5)Re(CO)3 (5a) under a variety of conditions. However, 5a can be isolated (45%) when a similar reaction is conducted at 120 °C. The IR properties of the preceding complexes are compared, and the crystal structures of 3a, 3b, 5a, and 5a are determined and analyzed.  相似文献   

7.
Treatment of the η1-acetylide complex [(η5-C5H5)(CO)(NO)W---CC---C(CH3)3]Li (4) with 1,2-diiodoethane in THF at −78 °C, followed by the addition of Li---CC---R [R=C(CH3)3, C6H5, Si(CH3)3, 6a6c] or n-C4H9Li and protonation with H2O, afforded the corresponding oxametallacyclopentadienyl complexes (η5-C5H5)W(I)(NO)[η2-O=C(CC---R)CH=CC(CH3)3] (7a7c), 8c and (η5-C5H5)W(I)(NO)[η2-O=C(n-C4H9)CH=CC(CH3)3] (9). The formation of these metallafuran derivatives is rationalized by the electrophilic attack of 1,2-diiodoethane onto the metal center of 4 to form first the neutral complex [(η5-C5H5)(I)(CO)(NO)W---CC---C(CH3)3] (5). Subsequent nucleophilic addition of Li---CC---R 6a6c or n-C4H9Li and a reductive elimination step followed by protonation leads to the products 7a7c and 9. One reaction intermediate could be trapped with CF3SO3CH3 and characterized by a crystal structure analysis. The identity of another intermediate was established by infrared spectroscopic data. The oxametallacyclopentadienyl complex 10 forms in the presence of excess 1,2-diiodoethane through an alternative pathway and crystallizes as a clathrate containing iodine.  相似文献   

8.
Reactions of rhodium(I) and iridium(I) chlorocomplexes of cyclohexa-1,3-diene, cyclohepta-1,3-diene, and cylo-octa-1,3,5-triene with AgBF4/CH2Cl2 afford respectively the cations [M(C6H6)(1,3-C6H8)]+, [M(η5-C7H7)(η5C7H9)]+ and [M(η6-C8H10)(η4-C8H10)]+; the latter complex is a hydrogenation catalyst for olefins.  相似文献   

9.
Di-η6-naphthalenechromium(0) (1) reacts at 150°C with benzene to yield (η6-naphthalene)(η6-benzene)chromium(0) (3) in 76% yield. In the presence of THF, 1 undergoes Lewis base catalyzed arene exchange at 80°C. Reactions of 1 with substituted arenes yield the mixed sandwich complexes 4 and 6–10 (arene = 1,4-C6H4Me2, 1,3,5-C6H3Me3, C6Me6, 1,4-C6H4(OMe)2, 1,4-C6H4F2 and 1,4-C10H6Me2). In all but one case (with 1,4-dimethylnaphthalene) exchange of a single naphthalene ligand is observed. In marked contrast to the lability of 1, dimesitylenechromium(0) (5) is inert to arene displacement in benzene up to 240°C. The molecular structure of 3 has been determined by X-ray crystallography. The crystal data are as follows: a 7.784(1), b 13.411(2), c 22.772(5) Å, Z = 8, space group Pbca. The structure was refined to a Rw value of 0.043. The naphthalene ligand in 3 is nearly planar and parallel to the approximately eclipsed benzene ring. Metal atom-ring distances are 1.631(9) and 1.611(4) Å for naphthalene and benzene, respectively. Catalyzed and uncatalyzed naphthalene exchanges in the sandwich complex are compared to the analogous reactions with the Cr(CO)3 complex 2. Naphthalene exchange in 2 in benzene is 103 to 104 times faster than arene exchange in other arenetricarbonylchromium compounds. The mild conditions for Lewis base catalyzed naphthalene exchange make 2 a good precursor of other arenetricarbonylchromium compounds. Examples include the Cr(CO)3 complexes of styrene, benzocyclobutene, 1-ethoxybenzocyclobutene, 1,8-dimethoxy-9,10-dihydroanthracene and 1,4-dimethylnaphthalene.  相似文献   

10.
Reactions of [Mo(η3-C3H5)Br(CO)2(NCMe)2] with the bidentate nitrogen ligands 2-(2-pyridyl)imidazole (L1), 2-(2′-pyridyl)benzimidazole (L2), N,N′-bis(2′-pyridinecarboxamido)-1,2-ethane (L3), and 2,2′-bisimidazole (L4) led to the new complexes [Mo(η3-C3H5)Br(CO)2(L)] (L = L1, 1; L2, 2; L4, 4) and [{Mo(η3-C3H5)Br(CO)2}2(μ-L3)] (3).The reaction of complexes 2 and 3 with Tl[CF3SO3] afforded [Mo(η3-C3H5)(CF3SO3)(CO)2(L2)] (2T) and [{Mo(η3-C3H5)(CF3SO3)(CO)2}2(μ-L3)] (3T).Complexes 3 and 2T were structurally characterized by single crystal X-ray diffraction, showing the facial allyl/carbonyls arrangement and the formation of the axial isomer. In 2T, two molecules are assembled in a hydrogen bond dimer.The four complexes 1–4 were tested as precursors in the catalytic epoxidation of cyclooctene and styrene, in the presence of t-butylhydroperoxide (TBHP), with moderate conversions and turnover frequencies for complexes 1–3 and very low ones for 4. The increasing number of N–H groups in the complexes seems to be responsible for the loss of catalytic activity, compared with other related systems. The cytotoxic activities of all the complexes were evaluated against HeLa cells. The results showed that compounds 1, 2, 4, and 2T exhibited significant activity, complexes 2 and 2T being particularly promising.  相似文献   

11.
The reaction of gaseous HCl with either the disodium or dilithium compound of the [nido-2,4-(SiMe3)2-2,4-C2B4H4]2− dianion (I) in 1:1 stoichiometry in THF produced the monoprotonated species 1-Na(THF)2-2,4-(SiMe3)2-2,4-C2B4H5 (II) or 1-Li(THF)2-2,4-(SiMe3)2-2,4-C2B4H5 (III), in 81% and 80% yields, respectively. This method proved superior to that involving the direct reduction of the closo-C2B4 carborane by metal hydrides. II and III were characterized by elemental analysis, 1H, 11B and 13C NMR and IR spectra. Compound II was recrystallized from a mixture THF, hexane and TMEDA (1:2:1) to isolate colorless crystals of the mixed solvated species, 1-(THF)-1-(TMEDA)-1-Na-2,4-(SiMe3)2-2,4-C2B4H5 (IV), which were subsequently used for X-ray diffraction studies. The structure of IV showed that the capping metal occupied the apical position above the open C2B3 face of the carborane and that a hydrogen atom was bridging the two adjacent boron atoms on that face. The 11B and 13C NMR spectra calculated by GIAO (gauge independent atomic orbital) methods at the 6-311G** level on the B3LYP/6-31G* optimized geometries of IIII, and a number of related nido- and closo-carboranes, gave excellent agreement with experiment, even in compounds where electron correlation effects are known to be important.  相似文献   

12.
The reaction of Li[closo-1-Me-1,2-C2B10H10] with cyclohexene oxide produced closo-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (1) in 86% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol gave the corresponding cage-opened potassium salt of the carborane anion, [nido-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B9H10] (2) in 82% yield. Deprotonation of (2) with two equivalents of n-butyllithium in THF at −78 °C, followed by its further reaction with anhydrous MCl4 · 2THF (M = Ti, Zr) produced the corresponding d0-half-sandwich metallacarboranes, closo-1-M(Cl)-2-Me-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (3 M = Zr; 4 M = Ti), in 59% and 51% yields, respectively. Reaction of Li[closo-1,2-C2B10H11] with Merrifield’s peptide resin (1%) in refluxing THF gave the ortho-carborane-functionalized polymer (5) in 88% yield. The corresponding closo-1-polystyryl-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (6) was produced in 94% yield by refluxing a mixture of the lithium salt of (5) and cyclohexene oxide in THF for 2 days. Compound (6) was decapitated, deprotonated and then reacted with ZrCl4 · 2THF to produce a polymer-supported d0-half-sandwich metallacarborane closo-1-Zr(Cl)-2-polystyryl-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (7) in 41% yield. Compounds (3) and (7), in the presence of MMAO-7 (13% ISOPAR-E), were found to catalyze the polymerization of ethylene and vinyl chloride in toluene to give high molecular weight PE (9.4 × 103 (Mw/Mn = 1.8)) and PVC (2.1 × 103 (Mw/Mn = 1.6)), respectively.  相似文献   

13.
《Polyhedron》2001,20(15-16):1859-1865
Treatment of the monoanions {M(CO)35-C5H4C(O)CH2CH2CO2Me]} with FeCo2(CO)93-S) in refluxing THF gave the novel cluster complexes (μ3-S)CoFeM(CO)85-C5H4C(O)CH2CH2CO2Me] (M=Mo, 1; M=W, 2). Reactions of the cluster (μ3-S)CoFeMo(CO)85-C5H4C(O)Me] (3) with amine derivatives 2,4-dinitrophenylhydrazine, thiosemicarbazide, (−)-5-(α-phenyl)semioxamazide and l-(+)-menthydrazide respectively at room temperature yielded four new hydrazone cluster complexes (μ3-S)CoFeMo(CO)85-C5H4C(NR)Me] [47, R=NHC6H3-2,4-(NO2)2, NHC(S)NH2, NHC(O)C(O)NHCH(Me)(C6H5) and NHCO2(menthyl)]. However, cluster 1 only reacted with 2,4-dinitrophenylhydrazine to give the cluster (μ3-S)CoFeMo(CO)85-C5H4C(NR)Me] [8, R=NHC6H3-2,4-(NO2)2] under the same conditions. Although two kinds of optically active groups have been attached to the racemic cluster, the mixture of diastereoisomers produced cannot be separated chromatographically. The 13C NMR showed the presence of the diastereoisomers of clusters 5 and 6. Cluster 1 has been solved by single-crystal X-ray diffraction.  相似文献   

14.
The reactions between the phosphine-organoiron [CpFeII6-C6Me5CH2PPh2]+ PF6? (1) and [RhCl(η4-diolefin)(μ-Cl)]2 in CH2Cl2 at reflux give the new heterobinuclear air-stable crystalline complexes [CpFeII6-C6Me5CH2)P(Ph)2Rh(η4-diene)Cl]PF6,(D'*-diene=cyclooctadiene (COD): 65%, 2; trimethylfluorobenzobicyclo[2.2.2]octadiene (Me3TFB): 48%, 3). Complexes 2 and 3 have been studied by 1H, 13C and 31P NMR spectroscopy and they are carbonylated (CO, 1 atm). Cyclic voltammetry experiments with addition of MeOH show electron transfer FeIRhI → FeIIRh0, the presence of a catalytic wave FeI/FeII and the possible formation of Rh hydrides. Under normal conditions 2 is a catalyst for hydrogenation of cyclohexene, but it is less efficient than the known mononuclear Rh1 analogues.  相似文献   

15.
《Polyhedron》1999,18(8-9):1279-1283
Some new o-carborane derivatives of stoichiometry 1,2-(SR)2-1,2-C2B10H10 [SR=S2NC7H4, S2CNEt2] have been synthesised by reaction of 1,2-Li2-1,2-C2B10H10 with the corresponding disulfide derivatives RSSR (RSSR=(C7H4NS2)2, 2,2′-dithiobis(benzothiazole); (Et2NCS2)2, tetraethylthiuram disulfide) in molar ratio 1:2. The reaction of 1-Li-2-SitBuMe2-1,2-C2B10H10 with RSSR (RSSR=(C5H4NS)2, 2,2′-dithiodipyridine; (C7H4NS2)2) in molar ratio 1:1 has afforded the new mixed di-substituted compounds 1-SR-2-SitBuMe2-1,2-C2B10H10 (SR=SNC5H4; S2NC7H4). The reaction of 1-SNC5H4-2-SitBuMe2-1,2-C2B10H10 with NBu4F in THF in molar ratio 1:2 has afforded the mono-substituted derivative 1-SNC5H4-1,2-C2B10H11, whereas the treatment of 1,2-(C7H4NS2)2-1,2-C2B10H10 with NBu4F in THF in molar ratio 1:5 has led to the partially degraded derivative NBu4[7,8-(S2NC7H4)2-7,8-C2B9H10]. The crystal structure of 1-SNC5H4-1,2-C2B10H11 has been determined by X-ray diffraction.  相似文献   

16.
Photolysis of the manganese half-sandwich complex (η5-C5Me5)Mn(CO)3 (1) in tetrahydrofuran (THF) yields cleanly the solvent complex (η5-C5Me5)(Mn(CO)2THF (2). Compound 2 undergoes spontaneous elimination of carbon monoxide to give at ambient temperature in approx. 20 h, or upon removal of solvent in vacuo, the novel dinuclear derivative (η5-C5Me5)2Mn2(μ-CO)3 (3). Elemental analyses and infrared and mass as wel as the 1H and 13C NMR spectra unequivocally demonstrate this compound to adopt a triply carbonyl-bridged structure containing the first example of a manganesemanganese multiple bond.  相似文献   

17.
Addition of the internal alkyne, 2-butyne, to nido-1,2-(Cp*RuH)2B3H7 (1) at ambient temperature produces nido-1,2-(Cp*Ru)2(μ-H)(μ-BH2)-4,5-Me2-4,5-C2B2H4 (2), nido-1,2-(Cp*RuH)2-4,5-Me2-4,5-C2B2H4 (3), and nido-1,2-(Cp*RuH)2-4-Et-4,5-C2B2H5 (4), in parallel paths. On heating, 2, which contains a novel exo-polyhedral borane ligand, is converted into closo-1,2-(Cp*RuH)2-4,5-Me2-4,5-C2B3H3 (5) and nido-1,6-(Cp*Ru)2-4,5-Me2-4,5-C2B2H6 (6) the latter being a framework isomer of 3. Heating 2 with 2-butyne generates nido-1,2-(Cp*RuH)2-3-{CMeCMeB(CMeCHMe)2}-4,5-Me2-4,5-C2B2H3 (7) in which the exo-polyhedral borane is triply hydroborated to generate a boron bound ---CMeCMeB(CMeCHMe)2 cluster substituent. Along with 3, 4, 5, 6, and 7, the reaction of 1 with 2-butyne at 85 °C gives closo-1,7-(Cp*Ru)2-2,3,4,5-Me4-6-(CHMeCH2Me)-2,3,4,5-C4B (8). Reaction of 1 with the terminal alkyne, phenylacetylene, at ambient temperature permits the isolation of nido-1,2-(Cp*Ru)2(μ-H)(μ-CHCH2Ph)B3H6 (9) and nido-1,2-(Cp*Ru)2(μ-H)(μ-BH2)-3-(CH2)2Ph-4-Ph-4,5-C2B2H4 (11). The former contains a Ru---B edge-bridging alkylidene fragment generated by hydrometallation on the cluster framework whereas the latter contains an exo-polyhedral borane like that of 2. Thermolysis of 11 results in loss of hydrogen and the formation of closo-1,2-(Cp*RuH)2-3-(CH2)2Ph-4-Ph-4,5-C2B3H3 (12).  相似文献   

18.
Reductive disilylation (Li + Me3SiCl − THF) of 1,3-cyclohexadiene led to 4,4′-bis(trimethylsilyl)bicyclohexyl-2,2′-diene (1). In the presence of TiCl4 in dichloromethane, 1 reacted with some acyl chlorides, anhydrides, and aldehydes to give tricyclo[7.4.0.03,8]trideca-4,12-diene-2-yl derivatives.  相似文献   

19.
The reactions of [MCp*6-C6Me6)][PF6], M = Fe: 1, Ru: 2, Cp* = η5-C5Me5, with KOH (in DME) or tert-BuOK (in THF) and methyl iodide, allyl bromide or benzyl bromide are regioselective on the arene ligand only for 2, giving the complexes [RuCp*6-C6(CH2R)6}][PF6], R = methyl (3), allyl (4) or benzyl (5), although some formations of C-C bonds also occur on the Cp* ligand in the case of the reactions of allyl and benzyl bromides. This contrasts with the complete lack of regioselectivity formerly observed with the iron analogue 1, and is best taken into account by the difference of steric effects which are less marked in 2 than in 1.  相似文献   

20.
Chlorosilyl-cyclopentadienyl titanium precursors [Ti(η5-C5Me4SiMeXCl)Cl3] (X=H 2, Cl 3) were prepared by reaction of TiCl4 with the trimethylsilyl derivatives of the corresponding cyclopentadienes. Methylation of these compounds with MgClMe under appropriate conditions afforded the methyl complexes [Ti(η5-C5Me4SiMe2R)XMe2] (R=H, X=Cl 5, Me 6; R=X=Me 7). Reactions of 2 and 3 with two equivalents of LiNHtBu afforded the ansa-silyl-η-amido compounds [Ti{η5-C5Me4SiMeX(η1-NtBu)}Cl2] (X=H 8, Cl 9). Methylation of 8 gave [Ti{η5-C5Me4SiMeH(η1-NtBu)}Me2] 10. Complex 9 was also obtained by reaction of 8 with BCl3, whereas the same reaction using alternative chlorinating agents (TiCl4, HCl) resulted in deamidation to give 2, which was also converted into 3 by reaction with BCl3. All of the new compounds were characterized by NMR spectroscopy and the molecular structures of 2 and 4 were determined by X-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号