首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
HIV-1 membrane fusion plays an important role in the process that HIV-1 entries host cells. As a treatment strategy targeting HIV-1 entry process, fusion inhibitors have been proposed. Nevertheless, development of a short peptide possessing high anti-HIV potency is considered a daunting challenge. He et al. found that two residues, Met626 and Thr627, located the upstream of the C-terminal heptad repeat of the gp41, formed a unique hook-like structure (M-T hook) that can dramatically improve the binding stability and anti-HIV activity of the inhibitors. In this work, we explored the molecular mechanism why M-T hook structure could improve the anti-HIV activity of inhibitors. Firstly, molecular dynamic simulation was used to obtain information on the time evolution between gp41 and ligands. Secondly, based on the simulations, molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) and molecular mechanics Generalized Born surface area (MM-GBSA) methods were used to calculate the binding free energies. The binding free energy of the ligand with M-T hook was considerably higher than the other without M-T. Further studies showed that the hydrophobic interactions made the dominant contribution to the binding free energy. The numbers of Hydrogen bonds between gp41 and the ligand with M-T hook structure were more than the other. These findings should provide insights into the inhibition mechanism of the short peptide fusion inhibitors and be useful for the rational design of novel fusion inhibitors in the future.  相似文献   

2.
The increasing diversity of small molecule libraries has been an important source for the development of new drugs and, more recently, for unraveling the mechanisms of cellular events-a process termed chemical genetics.(1) Unfortunately, the majority of currently available compounds are mechanism-based enzyme inhibitors, whereas most of cellular activity regulation proceeds on the level of protein-protein interactions. Hence, the development of small molecule inhibitors of protein-protein interactions is important. When screening compound libraries, low-micromolar inhibitors of protein interactions can be routinely found. The enhancement of affinities and rationalization of the binding mechanism require structural information about the protein-ligand complexes. Crystallization of low-affinity complexes is difficult, and their NMR analysis suffers from exchange broadening, which limits the number of obtainable intermolecular constraints. Here we present a novel method of ligand validation and optimization, which is based on the combination of structural and computational approaches. We successfully used this method to analyze the basis for structure-activity relationships of previously selected (2) small molecule inhibitors of the antiapoptotic protein Bcl-xL and identified new members of this inhibitor family.  相似文献   

3.
Gp41 and its conserved hydrophobic groove on the NHR region is one of the attractive targets in the design of HIV-1 entry inhibitory agents. This hydrophobic pocket is very critical for the progression of HIV and host cell fusion. In this study different ligand-based (structure similarity search) and structure-based (molecular docking and molecular dynamic simulation) methods were performed in a virtual screening procedure to select the best compounds with the most probable HIV-1 gp41 inhibitory activities. In silico pharmacokinetics and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties filtration also was considered to choose the compounds with best drug-like properties. The results of molecular docking and molecular dynamic simulations of the final selected compounds showed suitable stabilities of their complexes with gp41. The final selected hits could have better pharmacokinetics properties than the template compound, theaflavin digallate (TF3), a naturally-originated potent gp41 inhibitor.  相似文献   

4.
Due to the inherently flexible nature of a protein–protein interaction surface, it is difficult both to inhibit the association with a small molecule, and to predict how it might bind to the surface. In this study, we have examined small molecules that mediate the interaction between a WWI motif on the C-helix of HIV-1 glycoprotein-41 (gp41) and a deep hydrophobic pocket contained in the interior N-helical trimer. Association between these two components of gp41 leads to virus–cell and cell–cell fusion, which could be abrogated in the presence of an inhibitor that binds tightly in the pocket. We have studied a comprehensive combinatorial library of α-helical peptidomimetics, and found that compounds with strongly hydrophobic side chains had the highest affinity. Computational docking studies produced multiple possible binding modes due to the flexibility of both the binding site and the peptidomimetic compounds. We applied a transferred paramagnetic relaxation enhancement experiment to two selected members of the library, and showed that addition of a few experimental constraints enabled definitive identification of unique binding poses. Computational docking results were extremely sensitive to side chain conformations, and slight variations could preclude observation of the experimentally validated poses. Different receptor structures were required for docking simulations to sample the correct pose for the two compounds. The study demonstrated the sensitivity of predicted poses to receptor structure and indicated the importance of experimental verification when docking to a malleable protein–protein interaction surface.  相似文献   

5.
Protein-protein interactions are of critical importance in biological systems, and small molecule modulators of such protein recognition and intervention processes are of particular interest. To investigate this area of research, we have synthesized small-molecule libraries that can disrupt a number of biologically relevant protein-protein interactions. These library members are designed upon planar motif, appended with a variety of chemical functions, which we have termed "credit-card" structures. From two of our "credit-card" libraries, a series of molecules were uncovered which act as inhibitors against the HIV-1 gp41 fusogenic 6-helix bundle core formation, viral antigen p24 formation, and cell-cell fusion at low micromolar concentrations. From the high-throughput screening assays we utilized, a selective index (SI) value of 4.2 was uncovered for compound 2261, which bodes well for future structure activity investigations and the design of more potent gp41 inhibitors.  相似文献   

6.
The binding abilities of a set of structurally related aminopyrrolic synthetic receptors for mannosides, endowed with antimycotic activity against yeast and yeast‐like pathogens bearing mannoproteins on their cell surface, have been investigated towards the highly mannosylated gp120 and gp41 glycoproteins of the HIV envelope. A pronounced binding interaction with both glycoproteins was observed by SPR for most of the investigated compounds. Comparison of their binding properties towards the glycoproteins with their binding affinities toward mannosides revealed a direct correlation, supporting their role as carbohydrate binding agents (CBAs). Cytostatic activity studies revealed antiproliferative activity dependent on the nature and the structure of compounds. Antiviral activity studies against a broad panel of DNA and RNA viruses showed inhibitory effect against HIV infection of the T‐lymphocyte CEM cell line for two compounds, suggesting antiviral activity similar to other CBAs, such as the nonpeptidic pradimicin antibiotics.  相似文献   

7.
BRCTs are phosphoserine‐binding domains found in proteins involved in DNA repair, DNA damage response and cell cycle regulation. BRCA1 is a BRCT domain‐containing, tumor‐suppressing protein expressed in the cells of breast and other human tissues. Mutations in BRCA1 have been found in ca. 50 % of hereditary breast cancers. Cell‐permeable, small‐molecule BRCA1 inhibitors are promising anticancer agents, but are not available currently. Herein, with the assist of microarray‐based platforms, we have discovered the first cell‐permeable protein–protein interaction (PPI) inhibitors against BRCA1. By targeting the (BRCT)2 domain, we showed compound 15 a and its prodrug 15 b inhibited BRCA1 activities in tumor cells, sensitized these cells to ionizing radiation‐induced apoptosis, and showed synergistic inhibitory effect when used in combination with Olaparib (a small‐molecule inhibitor of poly‐ADP‐ribose polymerase) and Etoposide (a small‐molecule inhibitor of topoisomerase II). Unlike previously reported peptide‐based PPI inhibitors of BRCA1, our compounds are small‐molecule‐like and could be directly administered to tumor cells, thus making them useful for future studies of BRCA1/PARP‐related pathways in DNA damage and repair response, and in cancer therapy.  相似文献   

8.
The goals were (1) to understand the driving forces in the binding of small molecule inhibitors to the active site of PTP1B and (2) to develop a molecular mechanics-based empirical free energy function for compound potency prediction. A set of compounds with known activities was docked onto the active site. The related energy components and molecular surface areas were calculated. The bridging water molecules were identified and their contributions were considered. Linear relationships were explored between the above terms and the binding free energies of compounds derived based on experimental inhibition constants. We found that minimally three terms are required to give rise to a good correlation (0.86) with predictive power in five-group cross-validation test (q2 = 0.70). The dominant terms are the electrostatic energy and non-electrostatic energy stemming from the intra- and intermolecular interactions of solutes and from those of bridging water molecules in complexes.  相似文献   

9.
The rapid growth of the available crystallographic information about proteins and binding pockets creates remarkable opportunities for enriching the drug research pipelines with computational prediction of novel protein–ligand interactions. While ab initio quantum mechanical (QM) approaches are known to provide unprecedented accuracy in structure‐based binding energy calculations, they are limited to only small systems of dozens of atoms. In the structural chemogenomics era, it is critical that new approaches are developed that enable application of QM methodologies to noncovalent interactions in systems as large as protein–ligand complexes and conformational ensembles. This perspective highlights recent advances towards bridging the gap between high‐accuracy and high‐volume computations in drug research. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Firefly luciferase is widely used in molecular biology and bioanalytical systems as a reporter molecule due to the high quantum yield of the bioluminescence, availability of stable mutant forms of the enzyme with prescribed spectral characteristics and abundance of bacterial expression systems suitable for production of recombinant proteins in limitless quantities. In this review, we described fusion proteins of luciferase with biotin‐binding domain and streptavidin, with proteins A and G, antibodies, with DNA‐ and RNA‐binding proteins, as well as fusion proteins designed for BRET systems. The firefly luciferase‐based fusion proteins are represented as an effective tool for the development of different bioanalytical systems such as (1) systems in which luciferase is attached to the surface of the target and the bioluminescence signal is detected from the specific complexes formed; (2) BRET‐based systems, in which the specific interaction induces changes in the bioluminescence spectrum; and (3) systems that use modified or split luciferases, in which the luciferase activity changes under the action of the analyte. All these systems have wide application in biochemical analysis of physiologically important compounds, for the detection of pathogenic bacteria and viruses, for evaluation of protein–protein interactions, assaying of metabolites involved in cell communication and cell signaling.  相似文献   

11.
The new complexes of Cu (II) and Ni (II) of a tridentate Schiff base ligand derived from 9,10‐phenanthrenequinone and p‐toluic hydrazide have been synthesized and characterized by elemental analysis, electrical conductometry, FT‐IR, Mass, NMR and UV–Vis. The DFT calculations were carried out at B3LYP/6‐31G*(d) level for the determination of the optimized structure of the ligand and its complexes. The as‐synthesized compounds were screened for their antimicrobial activity. Also, their binding behavior with fish salmon‐DNA (FS‐DNA) and human serum albumin (HSA) were studied by different kinds of spectroscopic and molecular modeling techniques. The fluorescence data at different temperatures were applied in order to estimate the thermodynamics parameters of interactions of ligand and its complexes with DNA and HSA. The results showed that the as‐made compounds could bind to FS‐DNA and HSA via the groove binding as the major binding mode. According to molecular docking calculation and competitive binding experiments, these compounds bind to the minor groove of DNA and hydrophobic residues located in the subdomain IB of HSA. In addition, the molecular docking results kept in good consistence with experimental data.  相似文献   

12.
HIV-1通过其包膜糖蛋白跨膜亚基gp41介导的病毒-细胞膜融合进入和感染靶细胞.HIV-1融合抑制剂以gp41为靶点,通过阻断病毒与宿主细胞膜的融合,在感染的初始环节切断HIV-1的复制周期.2003年,首个多肽类融合抑制剂T-20获美国食品药物管理局(FDA)批准上市,但其易被体内蛋白酶降解、临床剂量大、耐受性差,且耐药性HIV-1毒株也很快出现.针对这些缺点,近年来在融合抑制剂的作用机制研究和新融合抑制剂的研发等方面取得了重要进展.以gp41不同功能区为靶点,具有高活性和更好代谢性质的多肽及多肽类似物候选分子不断被发现,成为抗HIV药物研究领域的热点之一.本文综述了多肽和类肽类融合抑制剂的研究进展,为相关的药物开发和基础研究提供参考.  相似文献   

13.
The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell–cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH–π interactions (stacking) in protein–carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH–π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH–π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol−1. All the results show that the stacking CH–π interactions in protein–carbohydrate complexes can be considered to be a driving force of the binding in such complexes.  相似文献   

14.
Potent modulators of RNA function can be assembled in cellulo by using the cell as a reaction vessel and a disease‐causing RNA as a catalyst. When designing small molecule effectors of function, a balance between permeability and potency must be struck. Low molecular weight compounds are more permeable whereas higher molecular weight compounds are more potent. The advantages of both types of compounds could be synergized if low molecular weight molecules could be transformed into potent, multivalent ligands by a reaction that is catalyzed by binding to a target in cells expressing a genetic defect. It was shown that this approach is indeed viable in cellulo. Small molecule modules with precisely positioned alkyne and azide moieties bind adjacent internal loops in r(CCUG)exp, the causative agent of myotonic dystrophy type 2 (DM2), and are transformed into oligomeric, potent inhibitors of DM2 RNA dysfunction by a Huisgen 1,3‐dipolar cycloaddition reaction, a variant of click chemistry.  相似文献   

15.
16.
针对人免疫缺陷病毒跨膜糖蛋白(HIV-1 gp41)N末端重复序列靶标设计二价融合抑制剂, 以C肽为模板, 通过共价交联形成类似发夹结构的相互平行的2条肽链, 研究了二价C肽分子不同连接位点与不同连接臂对抗HIV融合活性的影响. 细胞-细胞融合活性测试表明, 与单价分子相比, 所设计的基于N末端交联的C34或T20的二价分子在前体共价交联后, 活性明显提升. 基于C34或T20的N末端与C末端均存在发生协同效应的可能性, 在C34的N末端设计中β-丙氨酸为最适连接臂, 而在C末端的设计中C34C的融合活性提高最大. 单价分子CβAC34经过氧化形成二硫键连接的二价分子BiCβAC34, 融合活性从43.7 nmol/L提高到6.4 nmol/L, 表明二价抑制剂中2条C肽链间具有良好的协同效应. 本文结果表明, 针对gp41靶标设计的二价融合抑制剂能够相互协同.  相似文献   

17.
The molecular chaperone Hsp90 undergoes an ATP‐driven cycle of conformational changes in which large structural rearrangements precede ATP hydrolysis. Well‐established small‐molecule inhibitors of Hsp90 compete with ATP‐binding. We wondered whether compounds exist that can accelerate the conformational cycle. In a FRET‐based screen reporting on conformational rearrangements in Hsp90 we identified compounds. We elucidated their mode of action and showed that they can overcome the intrinsic inhibition in Hsp90 which prevents these rearrangements. The mode of action is similar to that of the co‐chaperone Aha1 which accelerates the Hsp90 ATPase. However, while the two identified compounds influence conformational changes, they target different aspects of the structural transitions. Also, the binding site determined by NMR spectroscopy is distinct. This study demonstrates that small molecules are capable of triggering specific rate‐limiting transitions in Hsp90 by mechanisms similar to those in protein cofactors.  相似文献   

18.
The fusogenic core assembly of human immunodeficiency virus type 1 (HIV-1) fusion protein gp41 is a critical transformation for viral entry. Molecules that are able to intercept this process are of great therapeutic value as HIV-1 fusion inhibitors. In the search for such molecules, assay systems that can be adapted to high-throughput screens are valuable. Given that gp41 fusogenic transformation is characterized by the hexameric association of heptads located at the N and C terminal regions of the protein ectodomain, the corresponding heptad peptides (CHR and NHR), known to form the six-helix bundle core of gp41 fusion active form, are potentially useful in developing a fluorescence resonance energy transfer (FRET) system for identification of HIV fusion inhibitors. We demonstrate that by strategically placing two FRET probes on these two peptides, we are able to monitor the intermolecular co-association by fluorescence quenching between the fluorescence donor and acceptor. The utility of the system is that it should be adaptable to high-throughput screening (HTS) toward peptide or small-molecule HIV fusion inhibitors targeting the gp41 core. Herein, we report the design, synthesis, and development of a N- and C- terminal peptide FRET pair for screening of gp41 six-helix bundle disruption.  相似文献   

19.
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.  相似文献   

20.
Computational analysis of protein–ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse of the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions, such as in docking programs, all rely on equations that sum each type of protein–ligand interactions in order to predict the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions constitute one of the most important part of total interactions between macromolecules. Unlike dispersion forces, they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this study, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and darunavir) were analyzed by using charge densities from the transferable aspherical-atom University at Buffalo Databank (UBDB). Moreover, we analyzed the electrostatic interaction energy for an ensemble of structures, using molecular dynamic simulations to highlight the main features of electrostatic interactions important for binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号