首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
Mass spectrometry imaging (MSI) is an important analytical technique that simultaneously reports the spatial location and abundance of detected ions in biological, chemical, clinical, and pharmaceutical studies. As MSI grows in popularity, it has become evident that data reporting varies among different research groups and between techniques. The lack of consistency in data reporting inherently creates additional challenges in comparing intra- and inter-laboratory MSI data. In this tutorial, we propose a unified data reporting system, SMART, based on the common features shared between techniques. While there are limitations to any reporting system, SMART was decided upon after significant discussion to more easily understand and benchmark MSI data. SMART is not intended to be comprehensive but rather capture essential baseline information for a given MSI study; this could be within a study (e.g., effect of spot size on the measured ion signals) or between two studies (e.g., different MSI platform technologies applied to the same tissue type). This tutorial does not attempt to address the confidence with which annotations are made nor does it deny the importance of other parameters that are not included in the current SMART format. Ultimately, the goal of this tutorial is to discuss the necessity of establishing a uniform reporting system to communicate MSI data in publications and presentations in a simple format to readily interpret the parameters and baseline outcomes of the data.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Caenorhabditis elegans nematode has emerged as a model organism paving the ways for multidisciplinary research in biomedical, environmental toxicology, aging, metabolism, obesity, and drug discovery. The wide range of applications of this model organism are attributed to C. elegans’ unique features: C. elegans are inexpensive, easy to grow and maintain in a laboratory, has a short lifespan, and has a small body size. With this increased interest, the need for analytical techniques to assess the biochemical information on intact worms continues to grow. Fourier Transform Infrared (FTIR) microspectroscopy is considered as a powerful technique that can be used to determine the chemical structure and composition of various materials, including biological samples. Furthermore, the development of focal plane array detectors has made this technique attractive to study complex biological systems such as whole nematodes. This review focuses on the use of FTIR microspectroscopy to study C. elegans. The first published work on the use of FTIR microspectroscopy to study a complex whole animal was reported in 2004. Since then, very few other studies were carried out. The objective of this review is to summarize work conducted to date using FTIR microspectroscopy to study nematodes and to discuss the information that can be gained by using this technique. This could allow scientists to add this technique to the arsenal of techniques already in use for C. elegans studies.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号