首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
[Fe]‐hydrogenase has a single iron‐containing active site that features an acylmethylpyridinol ligand. This unique ligand environment had yet to be reproduced in synthetic models; however the synthesis and reactivity of a new class of small molecule mimics of [Fe]‐hydrogenase in which a mono‐iron center is ligated by an acylmethylpyridinol ligand has now been achieved. Key to the preparation of these model compounds is the successful C?O cleavage of an alkyl ether moiety to form the desired pyridinol ligand. Reaction of solvated complex [(2‐CH2CO‐6‐HOC5H3N)Fe(CO)2(CH3CN)2]+(BF4)? with thiols or thiophenols in the presence of NEt3 yielded 5‐coordinate iron thiolate complexes. Further derivation produced complexes [(2‐CH2CO‐6‐HOC5H3N)Fe(CO)2(SCH2CH2OH)] and [(2‐CH2CO‐6‐HOC5H3N)Fe(CO)2(CH3COO)], which can be regarded as models of FeGP cofactors of [Fe]‐hydrogenase extracted by 2‐mercaptoethanol and acetic acid, respectively. When the derivative complexes were treated with HBF4?Et2O, the solvated complex was regenerated by protonation of the thiolate ligands. The reactivity of several models with CO, isocyanide, cyanide, and H2 was also investigated.  相似文献   

2.
We studied the facile synthesis of ortho‐phenylene‐based conjugated polymers through transformation of cross‐conjugated polymers having [2]dendralene moiety, poly(2,3‐diaryl[2]dendralene)s ( P1 s), and demonstrated the sequential synthesis of (Z)‐alkene‐ and ortho‐arylene‐containing conjugated polymers from P1 s. P1 s were transformed into cyclohexa‐1,4‐diene‐containing conjugated polymers ( P2 s) through a Diels–Alder reaction. Aromatization of the cyclohexa‐1,4‐diene skeleton was achieved by using 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone to give the ortho‐phenylene‐containing conjugated polymers ( P3 s). The ultraviolet–visible and fluorescence spectra of the cross‐conjugated polymers P1 s, and the conjugated polymers P2 s and P3 s indicated that the π–π interactions between the arylene moieties in P2 s were stronger than those in P1 s and P3 s. The synthetic method for P2 s and P3 s offers an effective synthesis of various types of (Z)‐alkene‐ and ortho‐arylene‐containing conjugated polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 827–832  相似文献   

3.
Investigations of Sb–Sb Bond Formation Reactions in the Coordination Sphere of Transition Metals The reaction of SbCl3 with various transition metal metalates of the type K[MLn] [MLn = Ni(CO)Cp*, Fe(CO)Cp′, Co(CO)4; Cp* = η5‐C5Me5, Cp′ = η5‐C5H4Me] in the presence of [Cr(CO)5thf] have been studied. With K[Ni(CO)Cp*] and K[Fe(CO)2Cp′] the trigonal‐pyramidal complexes [(μ3‐Sb){Ni(CO)Cp*}3] ( 1 ) and [(μ3‐Sb){Fe · (CO)2Cp′}3] ( 2 ), respectively, are obtained. The reaction with K[Co(CO)4] leads to the tetrahedral cluster [Co3(CO)93‐Sb{Cr(CO)5})] ( 3 ) and the butterfly cluster [Co2(CO)6(μ‐SbCl)(μ‐SbCl{Cr(CO)5})] ( 4 ). All products are characterised by X‐ray crystal structure determination. In contrast to the corresponding [(CO)5CrPCl3] system forming P–P bonds, starting from SbCl3/[Cr(CO)5thf] does not cause a Sb–Sb bond formation.  相似文献   

4.
Alkylation of [Fe(S2C6H4)2(CO)2]2? with S(C2H4Br)2 yields loosing one CO ligand the monocarbonyl complex [Fe(dpttd)CO], where dpttd represents the dianion of the novel pentadentate thioether-thiol ligand dpttd-H2 = 2,3,11,12-dibenzo-1,4,7,10,13-pentathiatridecan. The extremely stable [Fe(dpttd)CO] forms several coordination isomers with different ν(CO) frequencies. Dependent on the reaction conditions, the thermal or photochemical reaction of [Fe(dpttd)CO] with N2H5OH yields [Fe(dpttd)(N2H4)2–3] or [Fe(dpttd)(N2H4)]·THF; the latter can also be obtained from [Fe(dpttd){P(OPh)3}] and N2H4 in THF at 5–10°C. The CO ligand of [Fe(dpttd)CO] can be substituted thermally by PMe3, PEt3, PMePh2 or P(OPh)3 yielding the corresponding phosphine and phosphite complexes, but CO substitution by PPh3 does not take place. Dissolution of [Fe(dpttd)(N2H4)2–3] in dimethyl sulfoxide (DMSO) leads to [Fe(dpptd)(DMSO)], which yields [Fe(dpttd)(DMF)] at 80°C in dimethyl formamide (DMF). [Fe(dpttd)CO] is stable to air in the solid state as well as in solution, however, it decomposes on oxidation by H2O2, I2, Br2 or N-bromosuccinimide loosing CO and with destruction of the sulfur ligand. All complexes are not very soluble or hardly soluble in all common solvents; this is also found for methyl-substituted [Fe(dpttd)CO], which is obtained from [Fe(S2C6Me4)2(CO)2]2? and S(C2H4Br)2. Oxidation or thermal decomposition of the N2H4 complexes yields [Fe(dpttd)]x, from which [Fe(dpttd)CO] regenerates rapidly on treatment with CO.  相似文献   

5.
Thermolysis of the iron(IV) nitride complex [PhB(tBuIm)3Fe?N] with styrene leads to formation of the high‐spin iron(II) aziridino complex [PhB(tBuIm)3Fe‐N(CH2CHPh)]. Similar aziridination occurs with both electron‐rich and electron‐poor styrenes, while bulky styrenes hinder the reaction. The aziridino complex [PhB(tBuIm)3Fe‐N(CH2CHPh)] acts as a nitride synthon, reacting with electron‐poor styrenes to generate their corresponding aziridino complexes, that is, aziridine cross‐metathesis. Reaction of [PhB(tBuIm)3Fe‐N(CH2CHPh)] with Me3SiCl releases the N‐functionalized aziridine Me3SiN(CH2CHPh) while simultaneously generating [PhB(tBuIm)3FeCl]. This closes a synthetic cycle for styrene azirdination by a nitride complex. While the less hindered iron(IV) nitride complex [PhB(MesIm)3Fe?N] reacts with styrenes below room temperature, only bulky styrenes lead to tractable aziridino products.  相似文献   

6.
Lithiation/electrophile trapping reactions were carried out with the highly enantiomerically enriched complex [Cr(5‐bromonaphthalene)(CO)3]. Electrophile quenching with ClPPh2, PhCHO, and (Me3SiO)2 afforded the enantiomerically enriched (>97 % ee) planar chiral 5‐substituted naphthalene complexes with PPh2, CH(Ph)OH, and OH substituents, respectively. Very mild Pd‐catalyzed Suzuki–Miyaura cross‐coupling reactions were developed and applied to the highly labile [Cr(5‐bromonaphthalene)(CO)3] to give nine new planar chiral aryl‐, heteroaryl‐, alkynyl‐, and alkenylnaphthalene chromium complexes with high enantiomeric purity. The efficient ambient‐temperature coupling reactions with borinates prepared in situ were also applied to a number of chlorobenzene complexes and to aryl and vinyl halides.  相似文献   

7.
The oxidation of Fe(CO)5 with the [NO]+ salt of the weakly coordinating perfluoroalkoxyaluminate anion [F‐{Al(ORF)3}2]? (RF=C(CF3)3) leads to stable salts of the 18 valence electron (VE) species [Fe(CO)4(NO)]+ and [Fe(CO)(NO)3]+ with the Enemark–Feltham numbers of {FeNO}8 and {FeNO}10. This finally concludes the triad of heteroleptic iron carbonyl/nitrosyl complexes, since the first discovery of the anionic ([Fe(CO)3(NO)]?) and neutral ([Fe(CO)2(NO)2]) species over 80 years ago. Both complexes were fully characterized (IR, Raman, NMR, UV/Vis, scXRD, pXRD) and are stable at room temperature under inert conditions over months and may serve as useful starting materials for further investigations.  相似文献   

8.
Reaction of bicyclo[3.2.2] tertiary alcohols 7b,c and 23b with Fe2(CO)9, resulted in the corresponding dienyl Fe(CO)3 complexes, which upon HBF4/Ac2O treatment yielded the bicyclo [3.2.2] dienyl irontricarbonyl cations. Nucleophilic addition of CN- to those cations, resulted in the formation of δ,μ-bonded complexes, which were degraded with Me3NO to give substituted tricydic hydrocarbons (barbaralyl systems) in unusual positions. For purpose of comparison, the trifluoroacetolysis of 2-methyl-endo-6,7-benzobicyclo[3.2.2] nonatriene (22) has been studied.  相似文献   

9.
The synthesis, reactivity, and electronic structure of the unique germylone iron carbonyl complex [SiNSi]Ge0 →Fe(CO)4 is reported. The compound was obtained in 49 % yield from the reaction of the bis(N‐heterocyclic silylenyl)pyridine pincer ligand SiNSi (1,6‐C5NH3‐[EtNSi(NtBu)2CPh]2) with GeCl2?(dioxane) to give the corresponding chlorogermyliumylidene chloride precursor [SiNSi]GeIICl+ Cl? , which was further reduced with K2Fe(CO)4. Single‐crystal X‐ray diffraction analysis of [SiNSi]Ge →Fe(CO)4 revealed that the Ge0 center adopts a trigonal‐pyramidal geometry with a Si‐Ge‐Si angle of 95.66(2)°. Remarkably, one of the SiII donor atoms in the complex is five‐coordinated because of additional (pyridine)N→Si coordination. Unexpectedly, the reaction of [SiNSi]Ge →Fe(CO)4 with GeCl2?(dioxane) (one molar equivalent) yielded the first push–pull germylone–germylene donor–acceptor complex, [SiNSi]Ge →GeCl2→Fe(CO)4 through the insertion of GeCl2 into the dative Ge0→Fe bond. The electronic features of the new compounds were investigated by DFT calculations.  相似文献   

10.
The complexes Ph3ECo(CO)3L (E = Si, Ge; L = CO, PPh3 P(OPh)3) have been studied by electrochemistry. The reduction potential of these derivatives is less affected by the nature of the ligand L than in the case of [CO(CO)3L]2. The electrochemical reduction of the tin complexes [Co(CO)4]n[Fe(CO)2Cp]3?nSnCl (n = 1–3) showed that the formation of the radical anion occurred with tin-cobalt rather than tin-chloride bond rupture. Electrolysis of these tin derivatives did not give any distannane containing transition metal groups. However it can be noted that the Fe(CO)2Cp group stabilized these tin complexes.  相似文献   

11.
The sequential reaction of the amino(trimethylsilyl)carbene complex [(CO)5W=C(NH2)C≡CSiMe3] ( 1 ) with nBuLi and [I‐Fe(CO)2Cp] affords the C(carbene)‐N bridged heterobinuclear complex [(CO)5W=C{NHFe(CO)2Cp}C≡CSiMe3] ( 2 ). Desilylation of 1 is achieved by treatment with KF in THF/MeOH. From the reaction of the resulting complex [(CO)5W=C(NH2)C≡CH] ( 3 ) with nBuLi and [I‐Fe(CO)2Cp] two binuclear WFe compounds in a ratio of approximately 1:1 are obtained: the C(carbene)‐C≡C bridged complex 4 and the C(carbene)‐N bridged complex 5 . Repetition of the deprotonation/metallation sequence yields the trinuclear WFe2 complex 6 . One Fe(CO)2Cp fragment in 6 is bonded to the amino group and the other one to the terminal carbon atom of the ethynyl substituent. The analogous reaction of 3 with nBuLi and [Br‐Ni(PMe2Ph)2Mes] gives a ca. 1:1 mixture of two heterobinuclear complexes ( 7 and 8 ). Complex 7 is bridged by the C(carbene)‐C≡C and complex 8 by the C(carbene)‐N fragment. Subsequent reaction of 7 with BuLi and [Br‐Ni(PMe2Ph)2Mes] finally affords the trinuclear WNi2 complex 9 related to 6 . The solid‐state structure of 2 is established by an X‐ray diffraction analysis. The spectroscopic data of the bi‐ and trinuclear complexes indicate electronic communication between the metal centers through the bridging group.  相似文献   

12.
The reaction of the nitrosyl carbonyl complexes [Fe(NO)2(CO)2] and [Co(NO)(CO)3] with the decacarbonyldimetalates [M2(CO)10]2– (M = Cr and Mo) in THF as the solvent at room temperature was investigated. Thereby a substitution of one nitrosyl ligand towards carbon monoxide was observed in each case. Both reactions afforded the known metalate complexes [Fe(NO)(CO)3] and [Co(CO)4], respectively. These species were isolated as their corresponding PPN salts [PPN+ = bis(triphenylphosphane)iminium cation] in nearly quantitative yields. The products were unambiguously identified by their IR spectroscopic and elemental analytic data as well as by their characteristic colors and melting points.  相似文献   

13.
DFT calculations at the BP86/TZ2P level were carried out to analyze quantitatively the metal–ligand bonding in transition‐metal complexes that contain imidazole (IMID), imidazol‐2‐ylidene (nNHC), or imidazol‐4‐ylidene (aNHC). The calculated complexes are [Cl4TM(L)] (TM=Ti, Zr, Hf), [(CO)5TM(L)] (TM=Cr, Mo, W), [(CO)4TM(L)] (TM=Fe, Ru, Os), and [ClTM(L)] (TM=Cu, Ag, Au). The relative energies of the free ligands increase in the order IMID<nNHC<aNHC. The energy levels of the carbon σ lone‐pair orbitals suggest the trend aNHC>nNHC>IMID for the donor strength, which is in agreement with the progression of the metal–ligand bond‐dissociation energy (BDE) for the three ligands for all metals of Groups 4, 6, 8, and 10. The electrostatic attraction can also be decisive in determining trends in ligand–metal bond strength. The comparison of the results of energy decomposition analysis for the Group 6 complexes [(CO)5TM(L)] (L=nNHC, aNHC, IMID) with phosphine complexes (L=PMe3 and PCl3) shows that the phosphine ligands are weaker σ donors and better π acceptors than the NHC tautomers nNHC, aNHC, and IMID.  相似文献   

14.
Reaction of a new type of bidentate ligand PhPQu [PhPQu = 2‐diphenylphosphino‐4‐methylquinoline] with Fe(CO)5 in butanol gave trans‐Fe(FpPQu‐P)(CO)3 (1). Compound 1, which can act as a neutral tridentate organometallic ligand, was reacted with I B, II B metal compounds and a rhodium complex to give six binuclear complexes with Fe? M bonds, Fe(CO)3 (μ‐Ph2PQu)MXn (2–7) [M= Zn(II), Cd(II), Hg(II), Cu(I), Ag(I), Rh(I)], and an ion‐pair complex [Fe(CO)3 (μ‐Ph2PQu)2HgI][HgI3]? (8). The structure of 8 was determined by X‐ray crystallography. Complex 8 crystallizes in the space group P‐1 with a = 1.0758(3), b = 1.6210(4), c=1.7155(4)nm; a=75.60(2), β=71.81(2), γ=81.78(2)° and Z = 2 and its structure was refined to give agreement factors of R=0.050 and Rw = 0.057. The Fe‐Hg bond distance is 0.2536nm.  相似文献   

15.
We demonstrate that RuII(CO)2–protein complexes, formed by the reaction of the hydrolytic decomposition products of [fac‐RuCl(κ2‐H2NCH2CO2)(CO)3] (CORM‐3) with histidine residues exposed on the surface of proteins, spontaneously release CO in aqueous solution, cells, and mice. CO release was detected by mass spectrometry (MS) and confocal microscopy using a CO‐responsive turn‐on fluorescent probe. These findings support our hypothesis that plasma proteins act as CO carriers after in vivo administration of CORM‐3. CO released from a synthetic bovine serum albumin (BSA)–RuII(CO)2 complex leads to downregulation of the cytokines interleukin (IL)‐6, IL‐10, and tumor necrosis factor (TNF)‐α in cancer cells. Finally, administration of BSA–RuII(CO)2 in mice bearing a colon carcinoma tumor results in enhanced CO accumulation at the tumor. Our data suggest the use of RuII(CO)2–protein complexes as viable alternatives for the safe and spatially controlled delivery of therapeutic CO in vivo.  相似文献   

16.
Os(II) hydridocarbonyl complexes of coumarinyl azoimidazoles, [Osh(CO)(PPh3)2(CZ‐4R‐R′)]0/+ ( 3 , 4 ) (CZ‐R‐H = 2‐(coumarinyl‐6‐azo)‐4‐substituted imidazole or 1‐alkyl‐2‐(coumarinyl‐6‐azo)‐4‐substituted imidazole), were characterized from spectroscopic data and the single‐crystal X‐ray data for one of the complexes, [Osh(CO)(PPh3)2(CZ‐4‐Ph)] ( 3c ) (CZ‐4‐Ph = 2‐(coumarinyl‐6‐azo)‐4‐phenylimidazolate), confirmed the structure. The complexes show higher emission (quantum yield ? = 0.0163–0.16) and longer lifetime (τ = 1.4–10.3 ns) than free ligands (? = 0.0012–0.0185 and τ = 0.685–1.306 ns). Cyclic voltammetry shows quasi‐reversible metal oxidation at 0.67–0.94 V for [Os(III)/Os(II)] and 1.21–1.36 V for [Os(IV)/Os(III)] and subsequent azo reductions (?0.68 to ?0.95 V for [? N?N? ]/[? N N? ]? and irreversible < ?1.2 V for [? N N? ]?/[? N? N? ]2?) of the chelated coumarinyl azoimidazole. The complexes are photostable and show better photovoltaic power conversion efficiency than free ligands. Also, the complexes were used as catalysts for the oxidation of primary/secondary alcohols to aldehydes/ketones using oxidizing agents like N‐methylmorpholine N‐oxide, t‐BuOOH and H2O2. Density functional theory computation was carried out from the optimized structures and the data obtained were used to interpret the electronic and photovoltaic properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In the literature it was proposed that the treatment of [Fe2(CO)9] in THF resulted, during dissolution, in deep red solutions which should presumably contain labile complexes “Fe(CO)4THF”. This was supported by the fact that such solutions afforded, in the presence of N‐donor ligands like pyridine (py) or pyrazine (pz), metal carbonyl complexes of the formula [Fe(CO)4(py)] and [Fe(CO)4(pz)], respectively. Herein we describe how the true nature of these solutions can be better explained by a valence‐disproportionation reaction of the diiron nonacarbonyl, induced by the donor solvent THF, resulting in the compound [Fe(THF)6][Fe3(CO)11]. The formation of the undecacarbonyl‐triferrate(2–) in such solutions was unambiguously confirmed by IR spectroscopy and by the isolation and crystallization of the corresponding salt (PPN)2[Fe3(CO)11]; its molecular structure was determined, however, already described in the literature.  相似文献   

18.
The reaction of Fe3(CO)12 with O,O′‐dialkyldithiophosphate diethylamine salts (RO)2P{S}SH · Et2NH (R = CH3, CH2CH3) resulted in the formation of trinuclear cluster complex {μ‐SP(OR)2Fe[S2P(OR)2)]S‐μ]}Fe2(CO)6 [R = CH3 ( 1 ), CH2CH3 ( 2 )]. The two complexes were characterized by elemental analysis, FT‐IR, NMR (1H, 31P and 13C) spectroscopy, as well as by X‐ray diffraction analyses. Crystal structures reveal that one P–S bond is cleaved during the reaction, yielding the [2Fe2S] unit together with FePS3(CO)2. The other dialkyldithiophosphate coordinated with iron by S, S chelating model. The trinuclear cluster was observed with the P‐Fe and S–Fe bond formed by the P‐S activation. In addition, the electrochemical properties for complex 2 as an illustration was also studied by cyclic voltammetry in MeCN.  相似文献   

19.
We demonstrate that RuII(CO)2–protein complexes, formed by the reaction of the hydrolytic decomposition products of [fac‐RuCl(κ2‐H2NCH2CO2)(CO)3] (CORM‐3) with histidine residues exposed on the surface of proteins, spontaneously release CO in aqueous solution, cells, and mice. CO release was detected by mass spectrometry (MS) and confocal microscopy using a CO‐responsive turn‐on fluorescent probe. These findings support our hypothesis that plasma proteins act as CO carriers after in vivo administration of CORM‐3. CO released from a synthetic bovine serum albumin (BSA)–RuII(CO)2 complex leads to downregulation of the cytokines interleukin (IL)‐6, IL‐10, and tumor necrosis factor (TNF)‐α in cancer cells. Finally, administration of BSA–RuII(CO)2 in mice bearing a colon carcinoma tumor results in enhanced CO accumulation at the tumor. Our data suggest the use of RuII(CO)2–protein complexes as viable alternatives for the safe and spatially controlled delivery of therapeutic CO in vivo.  相似文献   

20.
The reaction of [Fe3(CO)12] with bis[2‐(diphenylphosphino)phenyl]ether (DPEphos) in refluxing THF afforded a mononuclear complex, [Fe(CO)41‐P‐DPEphos)] (1), as major product and a binuclear complex, [Fe2(CO)6(μ‐CO)(μ‐P,P‐DPEphos)] (2), as minor product respectively. The DPEphos ligand acts as a terminal P‐donor in complex 1 and a bridging P,P‐donor in complex 2. Complexes 1 and 2 were characterized by elemental analysis, fast atom bombardment mass spectrometry, FT‐IR, 1H and 31P{1H} NMR spectroscopy. The structure of complex 1 has been tentatively assigned by density functional theory calculations and its analogy with reported complexes. Combination of complex 1 and PdCl2 furnished an active catalyst for the Suzuki–Miyaura cross‐coupling reactions of various aryl halides with arylboronic acids. Interestingly, under the same experimental condition, complex 1/PdCl2 as catalyst showed superior activity over the DPEphos/PdCl2 system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号