首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As shown in [D. Hoffman, H. Jordon, Signed graph factors and degree sequences, J. Graph Theory 52 (2006) 27-36], the degree sequences of signed graphs can be characterized by a system of linear inequalities. The set of all n-tuples satisfying this system of linear inequalities is a polytope Pn. In this paper, we show that Pn is the convex hull of the set of degree sequences of signed graphs of order n. We also determine many properties of Pn, including a characterization of its vertices. The convex hull of imbalance sequences of digraphs is also investigated using the characterization given in [D. Mubayi, T.G. Will, D.B. West, Realizing degree imbalances of directed graphs, Discrete Math. 239 (2001) 147-153].  相似文献   

2.
The problem of how “near” we can come to a n-coloring of a given graph is investigated. I.e., what is the minimum possible number of edges joining equicolored vertices if we color the vertices of a given graph with n colors. In its generality the problem of finding such an optimal color assignment to the vertices (given the graph and the number of colors) is NP-complete. For each graph G, however, colors can be assigned to the vertices in such a way that the number of offending edges is less than the total number of edges divided by the number of colors. Furthermore, an Ω(epn) deterministic algorithm for finding such an n-color assignment is exhibited where e is the number of edges and p is the number of vertices of the graph (e?p?n). A priori solutions for the minimal number of offending edges are given for complete graphs; similarly for equicolored Km in Kp and equicolored graphs in Kp.  相似文献   

3.
A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that each 1-planar graph with minimum degree 7 contains a copy of K2∨(K1∪K2) with all vertices of degree at most 12. In addition, we also prove the existence of a graph K1∨(K1∪K2 ) with relatively small degree vertices in 1-planar graphs with minimum degree at least 6.  相似文献   

4.
A graph G on n≥3 vertices is called claw-heavy if every induced claw (K1,3) of G has a pair of nonadjacent vertices such that their degree sum is at least n. In this paper we show that a claw-heavy graph G has a Hamilton cycle if we impose certain additional conditions on G involving numbers of common neighbors of some specific pair of nonadjacent vertices, or forbidden induced subgraphs. Our results extend two previous theorems of Broersma, Ryjá?ek and Schiermeyer [H.J. Broersma, Z. Ryjá?ek, I. Schiermeyer, Dirac’s minimum degree condition restricted to claws, Discrete Math. 167-168 (1997) 155-166], on the existence of Hamilton cycles in 2-heavy graphs.  相似文献   

5.
In this paper we construct a planar graph of degree four which admits exactly Nu 3-colorings, we prove that such a graph must have degree at least four, and we consider various generalizations. We first allow our graph to have either one or two vertices of infinite degree and/or to admit only finitely many colorings and we note how this effects the degrees of the remaining vertices. We next consider n-colorings for n>3, and we construct graphs which we conjecture (but cannot prove) are of minimal degree. Finally, we consider nondenumerable graphs, and for every 3 <n<ω and every infinite cardinal k we construct a graph of cardinality k which admits exactly kn-colorings. We also show that the number of n-colorings of a denumerable graph can never be strictly between Nu and 2Nu and that an appropriate generalization holds for at least certain nondenumerable graphs.  相似文献   

6.
In this paper, we show that among all the connected graphs with n vertices and k cut vertices, the maximal signless Laplacian spectral radius is attained uniquely at the graph Gn,k, where Gn,k is obtained from the complete graph Kn-k by attaching paths of almost equal lengths to all vertices of Kn-k. We also give a new proof of the analogous result for the spectral radius of the connected graphs with n vertices and k cut vertices (see [A. Berman, X.-D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B 83 (2001) 233-240]). Finally, we discuss the limit point of the maximal signless Laplacian spectral radius.  相似文献   

7.
A non-isolated vertex of a graph G is called a groupie if the average degree of the vertices connected to it is larger than or equal to the average degree of the vertices in G. An isolated vertex is a groupie only if all vertices of G are isolated. While it is well known that every graph must contain at least one groupie, the graph Kn − e contains just 2 groupie vertices for n ≥ 2. In this paper we derive a lower bound for the number of groupies which shows, in particular, that any graph with 2 or more vertices must contain at least 2 groupies. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Let h denote the maximum degree of a connected graph H, and let χ(H) denote its chromatic, number. Brooks' Theorem asserts that if h ≥ 3, then χ(H) ≤ h, unless H is the complete graph Kh+1. We show that when H is not Kh+1, there is an h-coloring of H in which a maximum independent set is monochromatic. We characterize those graphs H having an h-coloring in which some color class consists of vertices of degree h in H. Again, without any loss of generality, this color class may be assumed to be maximum with respect to the condition that its vertices have degree h.  相似文献   

9.
A Steiner pentagon system is a pair (Kn, P) where Kn isthe complete undirected graph on n vertices. P is a collection of edge-disjoint pentagons which partition Kn, and such that every part of distinct vertices of Kn is joined by a path of length two in exactly one pentagon of the collection P. The number n is called the order of the system. This paper gives a somplete solution of the existence problem of Steiner pentagon systems. In particular it is shown that the spectrum for Steiner pentagon systems (=the set of all orders for which a Steiner pentagon system exists) is precisely the set of all n ≡ 1 or 5 (mod 10), except 15, for which no such system exists.  相似文献   

10.
 There are several known exact results on the crossing numbers of Cartesian products of paths or cycles with “small” graphs. In this paper we extend these results to the Cartesian products of two specific 5-vertex graphs with the star K 1, n . In addition, we give the crossing number of the graph obtained by adding two edges to the graph K 1,4, n in such a way that these new edges join a vertex of degree n+1 of the graph K 1,4, n with two its vertices of the same degree. Received: December 8, 1997 Final version received: August 14, 1998  相似文献   

11.
In this paper we compute the orientable genus of the line graph of a graph G, when G is a tree and a 2-edge connected graph, all the vertices of which have their degrees equal to 2, 3, 6, or 11 modulo 12, and either G can be imbedded with triangular faces only or G is a bipartite graph which can be imbedded with squares only as faces. In the other cases, we give an upper bound of the genus of line graphs. In this way, we solve the question of the Hamiltonian genus of the complete graph Kn, for every n ≥ 3.  相似文献   

12.
Let Gn be a graph of n vertices, having chromatic number r which contains no complete graph of r vertices. Then Gn contains a vertex of degree not exceeding n(3r?7)/(3r?4). The result is essentially best possible.  相似文献   

13.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

14.
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2). Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.  相似文献   

15.
Tongsuo Wu  Dancheng Lu 《代数通讯》2013,41(8):3043-3052
In this article, we study commutative zero-divisor semigroups determined by graphs. We prove that for all n ≥ 4, the complete graph K n together with two end vertices has a unique corresponding zero-divisor semigroup, while the complete graph K n together with three end vertices has no corresponding semigroups. We determine all the twenty zero-divisor semigroups whose zero-divisor graphs are the complete graph K 3 together with an end vertex.  相似文献   

16.
《Discrete Mathematics》2004,274(1-3):93-108
Fan Chung and Ron Graham (J. Combin. Theory Ser. B 65 (1995) 273–290) introduced the cover polynomial for a directed graph and showed that it was connected with classical rook theory. Dworkin (J. Combin. Theory Ser. B 71 (1997) 17–53) showed that the cover polynomial naturally factors for directed graphs associated with Ferrers boards. The authors (Adv. Appl. Math. 27 (2001) 438–481) developed a rook theory for shifted Ferrers boards where the analogue of a rook placement is replaced by a partial perfect matching of K2n, the complete graph on 2n vertices. In this paper, we show that an analogue of Dworkin's result holds for shifted Ferrers boards in this setting. We also show how cycle-counting matching numbers are connected to cycle-counting “hit numbers” (which involve perfect matchings of K2n).  相似文献   

17.
In this paper, we show that the complete symmetric directed graph with n vertices Kn1 admits an almost resolvable decomposition into TT3 (the transitive tournament on 3 vertices) or C3 (the directed cycle of length 3) if and only if n ≡ 1(mod 3).  相似文献   

18.
Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any 2-coloring of the edges of the complete graph Kn we can either find a monochromatic path substantially longer than 2n/3, or the coloring is close to the extremal coloring.  相似文献   

19.
An embedding of a digraph in an orientable surface is an embedding as the underlying graph and arcs in each region force a directed cycle. The directed genus is the minimum genus of surfaces in which the digraph can be directed embedded. Bonnington, Conder, Morton and McKenna [J. Combin. Theory Ser. B, 85(2002) 1-20] gave the problem that which tournaments on n vertices have the directed genus ?(n?3)(n?4)/12 ?, the genus of Kn. In this paper, we use the current graph method to show that there exists a tournament, which has the directed genus ?(n?3)(n?4)/12 ?, on n vertices if and only if n ≡ 3 or 7 (mod 12).  相似文献   

20.
It is shown that the interval number of a graph on n vertices is at most [14(n+1)], and this bound is best possible. This means that we can represent any graph on n vertices as an intersection graph in which the sets assigned to the vertices each consist of the union of at most [14(n+1)] finite closed intervals on the real line. This upper bound is attained by the complete bipartite graph K[n/2],[n/2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号