首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both longitudinal and shear ultrasonic attenuations and magnetization were measured as a function of magnetic field in the mixed state of two niobium single crystal samples with residual resistivity ratios of 68 and 2665 respectively. Particular attention was paid to the behavior of the attenuation at fields near Hc2. The higher purity sample showed marked frequency dependence of normalized attenuation at frequencies from 10 to 110 MHz. The other sample showed qualitatively similar but less pronounced frequency dependence at frequencies ranging from 10 to 435 MHz. Frequency dependence in both samples was in qualitative agreement with the theoretical results of Cerdeira and Houghton[1]. The attenuation changes near Hc2 at the lowest experimental frequencies were compared quantitatively with the frequency independent theoretical results of Houghton and Maki[2]. Agreement in the less pure sample was within a factor of two of the Houghton-Maki results at both 4·2 and 1·4 K. Quantitative comparison to theory for the purer sample must be qualified by the large observed frequency dependence. However, agreement between theory and experiment was excellent at 4·2 K. At 1·4 K in the purer sample, the theoretical predictions differed from experimental results by factors from two to six for various configurations of magnetic field and ultrasonic propagation and polarization directions. Houghton-Maki predictions of the dependence of ultrasonic attenuation on the geometry of magnetic field and ultrasonic propagation and polarization direction were also examined.  相似文献   

2.
3.
4.
Titov S  Maev R  Bogachenkov A 《Ultrasonics》2006,44(2):182-187
A new method of measuring velocity and attenuation of leaky surface waves is presented. A single focused transmitting transducer and linear receiving array in a pitch-catch arrangement are used in the proposed system. The spatial distribution of the acoustic field in the leaky wave is recorded by the array, and the parameters of the leaky wave can be obtained by processing the output waveforms. In comparison with existing material characterization systems, the mechanical scanning of the transducers is not used any more, and the measurement time is only limited by the time of the wave propagation and speed of the electronic data acquisition system.  相似文献   

5.
Yibo L  Liying S  Zhidong S  Yuankai Z 《Ultrasonics》2006,44(Z1):e1111-e1116
Ultrasonic guided wave is introduced as a new non-destructive long range pipe inspection method. It can be used to inspect pipe which is inaccessible to other conventional NDT methods, and rapid, long distance inspection can be achieved. An investigation of the guided ultrasonic waves traveling along pipe with special geometry characteristics, such as elbow, several girth welds, and some artificial defects is described. In this paper, factors that may cause attenuation of ultrasonic guided waves are discussed and energy attenuation of longitudinal and torsional guided waves is studied on an experimental pipe having seven girth welds. Good agreement has been obtained between the experiments and the predictions. In the end, the detection sensitivity and locating precision of two guided waves, namely longitudinal and torsional, were compared on defects, such as notch, burr and branch.  相似文献   

6.
We study the second-harmonic generation via transversely matched interaction of two counterpropagating ultrashort pulses in chi(2) photonic structures. We show that the emitted second-harmonic wave attains the form of spatially expanding toroid with the initial thickness given by the cross correlation of the pulses. We demonstrate the formation of such toroidal waves in crystals with random ferroelectric domains as well as in annularly poled nonlinear photonic structures.  相似文献   

7.
Successful processing of materials by powder sintering relies on the creation of strong interparticle bonds. During certain critical stages of the sintering process, the medium may be modeled as two phases consisting of the particles and a surrounding matrix. Ultrasonic methods have been proposed as a potential tool for monitoring such sintering processes. Thus, an understanding of the propagation and scattering of elastic waves in two-phase solids is of fundamental importance to these monitoring techniques. In this article, expressions for the ultrasonic attenuations are developed based on the spatial statistics of the density and Lame parameters of the material constituents under assumptions of statistical homogeneity and statistical isotropy. The formulation is based on the solution of the elastodynamic Dyson equation within the limits of the first-order smoothing approximation. Since the geometric two-point correlation function plays a central role in the model, numerical models are developed using Voronoi polycrystals surrounded by a matrix of different material properties. The spatial statistics of the medium are extracted from these models. The results presented suggest new ultrasonic techniques may be developed to extract multiple correlation lengths for such two-phase microstructures.  相似文献   

8.
Equations describing the interaction of ultrasonic waves with a moving vortex structure are derived. The addition to attenuation and the relative change in the velocity of longitudinal ultrasonic waves due to this interaction are calculated. It is found that when a longitudinal ultrasonic wave propagates along the direction of motion of the vortex structure and the velocity V of the structure is equal to half the velocity of the wave, then anomalous acoustic attenuation occurs and the contribution from the ultrasound-vortex interaction to the velocity of the ultrasonic wave vanishes. It is shown that if the vortex structure moves at a sufficiently high velocity, then (in contrast to the case of the structure at rest) a weakly damping collective mode propagating with velocity 2V arises in the structure. It is this mode that is responsible for anomalous attenuation of longitudinal ultrasonic waves.  相似文献   

9.
Measurements of velocity and attenuation of ultrasonic waves in n-type GaAs have been made between 4.2 and 240 K. They are interpreted in terms of available theory dealing with sound propagation in piezoelectric semiconductors. We find the piezoelectric constant e14 = 0.16 Cm2.  相似文献   

10.
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone.  相似文献   

11.
纵横波测已紧固螺栓轴向应力   总被引:4,自引:1,他引:4       下载免费PDF全文
本提出了用纵横波声时测已紧固螺栓轴向应力的一种新方法,解决了用超声精确地测已紧固螺栓应力问题,并且利用超声波沿轴向传播的波速同轴向应力以及三阶弹性常数的关系导出了螺栓应力同其材料声速特性、夹紧距离、温度及纵、横波声时的一种新关系,考虑了受应力作用时温度对声速的影响,简化了测量及计算过程,本还介绍了材料的声速特性实验及测量方法;实验结果表明应力低于250MPa,夹紧距离大于30mm时,应力超声测  相似文献   

12.
This paper proposes a method of simultaneous determination of the four layer parameters (mass density,longitudinal velocity,the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves.The analytical formula of the layer thickness related to the measured transmitted transfer functions is derived.The two determination steps of the four layer parameters are developed,in which acoustic impedance,time-of-flight and attenuation are first determined by the reflected transfer functions.Using the derived formula,it successively calculates and determines the layer thickness,longitudinal velocity and mass density by the measured transmitted transfer functions.According to the two determination steps,a more feasible and simplified measurement setups is described.It is found that only three signals (the reference waves,the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters.A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made.This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.  相似文献   

13.
Asphaltene deposition around the wellbore is a major cause of formation damage, especially in heavy oil reservoirs Ultrasonic stimulation, rather than chemical injection, is thought to be a more cost-effective and environmentally friendly means of removing asphaltene deposition. However, it seems to be unclear how crucial features like reservoir pore geometries and ultrasonic parameters affect this ultrasound treatment.In this work, five two-dimensional glass micromodels with different pore geometries were designed to assess the impact of pore geometries on the ultrasonic removal of asphaltene deposition. Experiments were undertaken in an ultrasound bath at a set frequency (20 kHz) and adjustable powers (100–1000 W). Direct image analysis before, during and after sonication was used to assess the impact of pore geometry and a change in ultrasonic parameter on the removal of asphaltene deposition. The effectiveness of ultrasound treatment at various sonication periods were found to be reliant on the pore geometries of the individual micromodels. For micromodels with throat sizes 300 µm and pore shapes as circle, square and triangle, an increase in ultrasonic power from 400 to 1000 W resulted in an increase in the percentage of removed asphaltene deposition after 2 h from 12.6 to 14.7, 11.5 to 14.63, and 5.8 to 7.1 percent, respectively.  相似文献   

14.
对两端自由金属管(杆)弯曲振动实验进行了分析,对观察到的现象给出了相应的解释.  相似文献   

15.
We observe traveling waves emitted from Turing spots in the chlorine dioxide-iodine-malonic acid reaction. The newborn waves are continuous, but they break into segments as they propagate, and the propagation of these segments ultimately gives rise to spatiotemporal chaos. We model the wave-breaking process and the motion of the chaotic segments. We find stable segmented spirals as well. We attribute the segmentation to an interaction between front rippling via a transverse instability and front symmetry breaking by a fast-diffusing inhibitor far from the codimension-2 Hopf-Turing bifurcation, and the chaos to a secondary instability of the periodic segmentation.  相似文献   

16.
Evaluating bone regularly is important to prevent and control the disease of osteoporosis. Impact of osteoporosis on ultrasonic guided waves propagating in human long bones is studied in this paper. Multi-scale wavelet transform is proposed to process the received guided waves, and by analyzing energy changes in detail components of high order wavelet at different propagating distance to assess if osteoporosis happened. The guided waves signals are collected from the tibias of 13 volunteers. Based on the analysis of multi-scale wavelet transform, the high order detail components d6 and d5 changed dramatically with the propagation of ultrasonic guided waves along long bones, which means these 7 volunteers are diagnosed with osteoporosis. Compared with X-ray diagnosis, the effectiveness of this method can reach 92.3% in 13 volunteers. This suggests the multi-scale wavelet transform method is potential in ultrasonic assessment of bone quality.  相似文献   

17.
Ultrasonic attenuation is important not only as a parameter for characterizing tissue but also for compensating other parameters that are used to classify tissues. Several techniques have been explored for estimating ultrasonic attenuation from backscattered signals. In the present study, a technique is developed to estimate the local ultrasonic attenuation coefficient by analyzing the time domain backscattered signal. The proposed method incorporates an objective function that combines the diffraction pattern of the source/receiver with the attenuation slope in an integral equation. The technique was assessed through simulations and validated through experiments with a tissue mimicking phantom and fresh rabbit liver samples. The attenuation values estimated using the proposed technique were compared with the attenuation estimated using insertion loss measurements. For a data block size of 15 pulse lengths axially and 15 beamwidths laterally, the mean attenuation estimates from the tissue mimicking phantoms were within 10% of the estimates using insertion loss measurements. With a data block size of 20 pulse lengths axially and 20 beamwidths laterally, the error in the attenuation values estimated from the liver samples were within 10% of the attenuation values estimated from the insertion loss measurements.  相似文献   

18.
An ultrasonic reflectivity method of evaluating the acoustic parameters of porous materials saturated by air (or any other gas) is discussed. The method is based on experimental detection of waves reflected at normal incidence by the first and second interface of the material. This method is based on a temporal model of direct and inverse scattering problems for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material with a rigid frame [Fellah et al., J. Acoust. Soc. Am. 113, 61-73 (2003)]. Generally, the conventional ultrasonic approach can be used to determine tortuosity, and viscous and thermal characteristic lengths via transmitted waves. Porosity cannot be estimated in transmitted mode because of its very weak sensitivity. First interface use of the reflected wave at oblique incidence leads to the determination of porosity and tortuosity [Fellah et al., J. Acoust. Soc. Am. 113, 2424-2433 (2003)] but this is not possible at normal incidence. Using experimental data of reflected waves by the first and second interface at normal incidence simultaneously leads to the determination of porosity, tortuosity, viscous and thermal characteristic lengths. As with the classic ultrasonic approach for characterizing porous material saturated with one gas, both characteristic lengths are estimated individually by assuming a given ratio between them. Tests are performed using weakly resistive industrial plastic foams. Experimental and numerical results, and prospects are discussed.  相似文献   

19.
The generation of ultrasonic wave modes in thin-walled metal tubing has been investigated experimentally using piezoelectric ultrasonic probes. It is shown that the L(0, 1) mode, which is comparable to the A0 Lamb wave mode in flat plate, can be generated with acceptable efficiency. The L(0, 2) mode (compare the S0 Lamb wave mode) is generated rather less efficiently, while its greater group velocity tends to enhance the resolution problems so caused.The initial probe designs were inefficient in that a considerable amount of ultrasonic ‘noise’ was also present which could mask ultrasonic pulses of interest. This would be especially so for short range operation. An improved probe design reduced this background noise to a more acceptable level.The propagation of the L(0, 1) mode around a length of bent (U-form) tubing has also been investigated and it is shown that the ultrasonic pulse is both attenuated and lengthened, while structure has also been introduced. The theoretical implications of this are discussed. Finally a small amount of work is presented on the interaction of both modes with artificial defects.  相似文献   

20.
《Physics letters. A》1997,235(2):145-146
The stability of solitary waves of the Kadomtsev-Petviashvili and Boussinesq equations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号