首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
2.
Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate‐based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen‐containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X‐ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy‐storage and sensing devices.  相似文献   

3.
4.
5.
6.
7.
This paper is aiming to give a brief overview of recent research in the field of all‐solid‐state, internal solution free, ion‐selective electrodes and reference electrodes, employing conducting polymers or nano‐/microstructures as solid contacts beneath the polymeric, ion‐selective or reference membranes. The emphasis is on papers published in the last five years (after 2006). According to the papers published, poly(3‐octylthiophene) conducting polymer transducers offer highly reliable sensors for various applications, involving demanding analytical approaches and miniature sensors. On the other hand, the search for alternative materials continues: the sensors obtained by placing nano‐/microstructures (conducting polymers but also other materials, like, e.g., carbon nanotubes) underneath the receptor membrane are intensively tested. The recent years have also shown how useful the application of advanced instrumental methods is for the investigation of processes occurring within all‐solid‐state ion‐selective electrodes.  相似文献   

8.
Solid‐state route to a cyclobutenone : Ruthenium perchlorocyclobutenonyl complex 2 is obtained by solid‐state photoisomerization of ruthenium trichloroacetyl acetylide complex 1 . The four‐membered ring is sufficiently robust that transfer of the intact ligand could be readily achieved in a reaction of 2 with an enyne. Cyclobutenedionyl complex 3 was obtained by hydrolysis of 2 in H2O/THF.

  相似文献   


9.
10.
Graphene‐related materials contain chemically bonded oxygen atoms in the form of epoxy, hydroxy, carboxy, and carbonyl groups. It is important to determine the quantity of oxygen atoms and to understand their position on the graphene sheet. However, visualization of these groups by standard methods is a challenge. Here, we utilize europium(III) as a selective label for oxygen‐containing groups. We studied three different graphene‐related materials: 1) graphene oxide, 2) chemically reduced graphene oxide, and 3) thermally reduced graphene oxide (the number of oxygen containing groups decreases from material 1 to 3). We show that it is possible to efficiently use Eu as a label of oxygen‐containing groups. This Eu label could be applied to determine the precise location of oxygen‐containing groups on graphene sheets and also induce novel optical, electrochemical, and catalytic properties.  相似文献   

11.
We have prepared Pt/Fe‐ and Fe‐nanoparticle‐labeled graphene sheets and demonstrate that these sheets can be detected by using impact electrochemistry through oxygen reduction mediation.  相似文献   

12.
Chromium mononitride (CrN) exhibits interesting magnetic, structural, and electronic properties for technological applications. Experimental reports on these properties are often inconsistent owing to differences in the degree of nonstoichiometry in CrNx. To date, the preparation of bulk and stoichiometric CrN has been challenging; most products are in the form of a thin film produced by non‐equilibrium processes, and are often nonstoichiometric and poorly crystallized. In this work, we formulated a solid‐state ion‐exchange route for the synthesis of CrN under high pressure. The final CrN product is phase‐pure, stoichiometric, and well‐crystallized in the bulk form. Near‐stoichiometric and well‐crystallized CrN can be synthesized using the same route at atmospheric pressure, making massive and industrial‐scale production technologically feasible. The successful synthesis of stoichiometric and bulk CrN is expected to open new opportunities in diverse areas of fundamental research.  相似文献   

13.
Nitrogen functionalization of graphene offers new hybrid materials with improved performance for important technological applications. Despite studies highlighting the dependence of the performance of nitrogen‐functionalized graphene on the types of nitrogen functional groups that are present, precise synthetic control over their ratio is challenging. Herein, the synthesis of nitrogen‐functionalized graphene rich in amino groups by a Bucherer‐type reaction under hydrothermal conditions is reported. The efficiency of the synthetic method under two hydrothermal conditions was examined for graphite oxide produced by Hummers and Hofmann oxidation routes. The morphological and structural properties of the amino‐functionalized graphene were fully characterized. The use of a synthetic method with a well‐known mechanism for derivatization of graphene will open new avenues for highly reproducible functionalization of graphene materials.  相似文献   

14.
Microwaves (MWs) are applied to initialize deoxygenation of graphene oxide (GO) in the solid state and at low temperatures (~165 °C). The Fourier‐transform infrared (FTIR) spectra of MW‐reduced graphene oxide (rGO) show a significantly reduced concentration of oxygen‐containing functional groups, such as carboxyl, hydroxyl and carbonyl. X‐ray photoelectron spectra confirm that microwaves can promote deoxygenation of GO at relatively low temperatures. Raman spectra and TGA measurements indicate that the defect level of GO significantly decreases during the isothermal solid‐state MW‐reduction process at low temperatures, corresponding to an efficient recovery of the fine graphene lattice structure. Based on both deoxygenation and defect‐level reduction, the resurgence of interconnected graphene‐like domains contributes to a low sheet resistance (~7.9×104 Ω per square) of the MW‐reduced GO on SiO2‐coated Si substrates with an optical transparency of 92.7 % at ~547 nm after MW reduction, indicating the ultrahigh efficiency of MW in GO reduction. Moreover, the low‐temperature solid‐state MW reduction is also applied in preparing flexible transparent conductive coatings on polydimethylsiloxane (PDMS) substrates. UV/Vis measurements indicate that the transparency of the thus‐prepared MW‐reduced GO coatings on PDMS substrates ranges from 34 to 96 %. Correspondingly, the sheet resistance of the coating ranges from 105 to 109 Ω per square, indicating that MW reduction of GO is promising for the convenient low‐temperature preparation of transparent conductors on flexible polymeric substrates.  相似文献   

15.
Silicon‐based nanocomposites with slitlike nanopores were prepared by heating a mixture of layered CaSi2 and NiCl2. The formation mechanism is based on a solid‐state exfoliation reaction wherein the formation of CaCl2 promotes the extraction of Ca from CaSi2, thereby exfoliating the layered structure. The nanocomposites showed anode capacity for lithium ion batteries up to 804 mA h g?1.  相似文献   

16.
The synthesis of the first examples of tellurophenes exhibiting phosphorescence in the solid state and under ambient conditions (room temperature and in air) is reported. Each of these main‐group‐element‐based emitters feature pinacolboronates (BPin) as ring‐appended side groups. The nature of the luminescence observed was also investigated using computational methods.  相似文献   

17.
Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid‐state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self‐assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule‐like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li+ and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f‐block element materials and vesicle‐like POMs.  相似文献   

18.
Graphene has a wide range of potential applications, thus tremendous efforts have been put into ensuring that the most direct and effective methods for its large‐scale production are developed. The formation of graphene materials from graphene oxide through a chemical reduction method is still one of the most preferred routes. Numerous methods starting from various reducing agents have been developed to obtain near‐pristine graphene sheets. However, most of the reducing agents are not mechanistically supported by classical organic chemistry knowledge and of those that are supported, they are only theoretically capable of, at most, reducing oxygen‐containing groups on graphene oxide to hydroxyl groups. Herein, we present a mechanistically proven method for the selective defunctionalisation of hydroxyl groups from graphene oxide that is based on ethanethiol–aluminium chloride complexes and provides a graphene material with improved properties. The structural, morphological and electrochemical properties of the graphene materials have been fully characterised based on high‐resolution X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. Our analyses showed that the obtained graphene materials exhibited high heterogeneous electron‐transfer rates, low charge‐transfer resistance and high conductivity as compared to the parent graphene oxide. Moreover, the selective defunctionalisation of hydroxyl groups could potentially allow for the tailoring of graphene properties for various applications.  相似文献   

19.
Graphene materials are generally prepared from the exfoliation of graphite oxide (GO) to graphene oxide, followed by subsequent chemical or thermal reduction. These methods, although efficient in removing most of the oxygen functionalities from the GO material, lack control over the extent of the reduction process. We demonstrate here an electrochemical reduction procedure that not only allows for precise control of the reduction process to obtain a graphene material with a well‐defined C/O ratio in the range of 3 to 10, but also one that is able to tune the electrocatalytic properties of the reduced material. A method that is able to precisely control the amount and density of the oxygen functionalities on the graphene material as well as its electrochemical behaviour is very important for several applications such as electronics, bio‐composites and electrochemical devices.  相似文献   

20.
An attempt has been made to design double‐stranded ladder‐like coordination polymers (CPs) of hemidirected PbII. Four CPs, [Pb(μ‐bpe)(O2C‐C6H5)2] ? 2H2O ( 1 ), [Pb2(μ‐bpe)2(μ‐O2C‐C6H5)2(O2C‐C6H5)2] ( 2 ), [Pb2(μ‐bpe)2(μ‐O2C‐p‐Tol)2(O2C‐p‐Tol)2] ? 1.5 H2O ( 3 ) and [Pb2(μ‐bpe)2(μ‐O2C‐m‐Tol)2(O2C‐m‐Tol)2] ( 4 ) (bpe=1,2‐bis(4′‐pyridyl)ethylene), have been synthesised and investigated for their solid‐state photoreactivity. CPs 2 – 4 , having a parallel orientation of bpe molecules in their ladder structures and being bridged by carboxylates, were found to be photoreactive, whereas CP 1 is a linear one‐dimensional (1D) CP with guest water molecules aggregating to form a hydrogen‐bonded 1D structure. The linear strands of 1 were found to pair up upon eliminating lattice water molecules by heating, which led to the solid‐state structural transformation of photostable linear 1D CP 1 into photoreactive ladder CP 2 . In the construction of the double‐stranded ladder‐like structures, the parallel alignment of C?C bonds in 2 – 4 is dictated by the chelating and μ2‐η21 bridging modes of the benzoate and toluate ligands. The role of solvents in the formation of such double‐stranded ladder‐like structures has also been investigated. A single‐crystal‐to‐single‐crystal transformation occurred when 4 was irradiated under UV light to form [Pb2(rctt‐tpcb)(μ‐O2C‐m‐Tol)2(O2C‐m‐Tol)2] ( 5 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号