首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We report the synthesis, crystal structures, and spectral, thermal, and magnetic properties of a family of metal–organic perovskite ABX3, [C(NH2)3][MII(HCOO)3], in which A=C(NH2)3 is guanidinium, B=M is a divalent metal ion (Mn, Fe, Co, Ni, Cu, or Zn), and X is the formate HCOO?. The compounds could be synthesized by either diffusion or hydrothermal methods from water or water‐rich solutions depending on the metal. The five members (Mn, Fe, Co, Ni, and Zn) are isostructural and crystallize in the orthorhombic space group Pnna, while the Cu member in Pna21. In the perovskite structures, the octahedrally coordinated metal ions are connected by the antianti formate bridges, thus forming the anionic NaCl‐type [M(HCOO)3]? frameworks, with the guanidinium in the nearly cubic cavities of the frameworks. The Jahn–Teller effect of Cu2+ results in a distorted anionic Cu–formate framework that can be regarded as Cu–formate chains through short basal Cu? O bonds linked by the long axial Cu? O bonds. These materials show higher thermal stability than other metal–organic perovskite series of [AmineH][M(HCOO)3] templated by the organic monoammonium cations (AmineH+) as a result of the stronger hydrogen bonding between guanidinium and the formate of the framework. A magnetic study revealed that the five magnetic members (except Zn) display spin‐canted antiferromagnetism, with a Néel temperature of 8.8 (Mn), 10.0 (Fe), 14.2 (Co), 34.2 (Ni), and 4.6 K (Cu). In addition to the general spin‐canted antiferromagnetism, the Fe compound shows two isothermal transformations (a spin‐flop and a spin‐flip to the paramagnetic phase) within 50 kOe. The Co member possesses quite a large canting angle. The Cu member is a magnetic system with low dimensional character and shows slow magnetic relaxation that probably results from the domain dynamics.  相似文献   

2.
Zusammenfassung In den beiden untersuchten Doppelfluorid-Serien, BaMF4 und Pb2 MF6 (M=Mn, Fe, Co, Ni, Cu, Zn), zeigen die Verbindungen des Cu und des Zn ein anderes Verhalten als die übrigen. Die Zn-Verbindungen sind diamagnetisch, die Cu-Verbindungen paramagnetisch. Pb2CuF6 befolgt dasCuriesche Gesetz, während BaCuF4 eineCurie-Weiss-Abweichung unterhalb 212 K aufweist.Im untersuchten Temperaturbereich zeigt sich für alle anderen Verbindungen, mit Ausnahme von Pb2FeF6, Antiferromagnetismus.
Magnetic properties of the compounds BaMF4 and Pb2 MF6 (M=Mn, Fe, Co, Ni, Cu, Zn)
Two series of double fluorides, BaMF4 and Pb2 MF6 (M=Mn, Fe, Co, Ni, Cu, Zn) have been studied, the compounds of Cu and Zn differing in behaviour from the others. The Zn componds are diamagnetic, the Cu compounds paramagnetic. Pb2CuF6 conforms toCurie's law while BaCuF4 exhibits aCurie-Weiss deviation below 212° K.With the exception of Pb2FeF6, all the other compounds show antiferromagnetism in the studied temperature range.


Mit 5 Abbildungen

Herrn Prof. Dr.Hans Nowotny ergebenst gewidmet.  相似文献   

3.
A family of three-dimensional chiral metal-formate frameworks of [NH(4)][M(HCOO)(3)] (M = Mn, Fe, Co, Ni, and Zn) displays paraelectric to ferroelectric phase transitions between 191 and 254 K, triggered by disorder-order transitions of NH(4)(+) cations and their displacement within the framework channels, combined with spin-canted antiferromagnetic ordering within 8-30 K for the magnetic members, providing a new class of metal-organic frameworks showing the coexistence of magnetic and electric orderings.  相似文献   

4.
The porosity and hydrogen storage properties for the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn) are reported. Argon sorption isotherms measured at 87 K afford BET surface areas ranging from 560 m2/g for Ni3[Co(CN)6]2 to 870 m2/g for Mn3[Co(CN)6]2; the latter value is comparable to the highest surface area reported for any known zeolite. All six compounds show significant hydrogen sorption at 77 K and 890 Torr, varying from 1.4 wt % and 0.018 kg H2/L for Zn3[Co(CN)6]2 to 1.8 wt % and 0.025 kg H2/L for Cu3[Co(CN)6]2. Fits to the sorption data employing the Langmuir-Freundlich equation give maximum uptake quantities, resulting in a predicted storage capacity of 2.1 wt % and 0.029 kg H2/L for Cu3[Co(CN)6]2 at saturation. Enthalpies of adsorption for the frameworks were calculated from hydrogen isotherms measured at 77 and 87 K and found to increase with M varying in the order Mn < Zn < Fe < Co < Cu < Ni. In all cases, the binding enthalpies, which lie in the range of 5.3-7.4 kJ/mol, are higher than the 4.7-5.2 kJ/mol measured for Zn4O(1,4-benzenedicarboxylate)3.  相似文献   

5.
Two mixed‐valent disc‐like hepta‐nuclear compounds of [FeIIFeIII6(tea)6](ClO4)2 ( 1Fe , tea = N(CH2CH2O)33?) and [MnII3MnIII4(nmdea)6(N3)6]·CH3OH ( 2Mn , nmdea = CH3N(CH2CH2O)22?) have been synthesized by the reaction of Fe(ClO4)2·6H2O with triethanolamine (H3tea) for the former and reaction of Mn(ClO4)2·6H2O with diethanolamine (H2nmdea) and NaN3 for the later, respectively. 1Fe has the cationic cluster with a planar [FeIIFeIII6] core consisting of one central FeII and six rim FeIII atoms in hexagonal arrangement. The Fe ions are linked by the oxo‐bridges from the alcohol arms in the manner of edge‐sharing of their coordination octahedra. 2Mn is a neutral cluster with a [MnII3MnIII4] core possessing one central MnII atom surrounded by six rim Mn ions, two MnII and four MnIII. The structure is similar to 1Fe but involves six terminal azido ligands, each coordinate one rim Mn ion. 1Fe showed dominant antiferromagnetic interaction within the cluster and long‐range ordering at 2.7 K. The cluster probably has a ground state of low spin of S = 5/2 or 4/2. The long‐range ordering is weak ferromagnetic, showing small hysteresis with a remnant magnetization of 0.3 Nβ and a coercive field of 40 Oe. Moreover, the isofield of lines 1Fe are far from superposition, indicating the presence of significant zero–field splitting. Ferromagnetic interactions are dominant in 2Mn . An intermediate spin ground state 25/2 is observed at low field. In high field of 50 kOe, the energetically lowest state is given by the ms = 31/2 component of the S = 31/2 multiplet due to the Zeeman effect. Despite of the large ground state, no single‐molecule magnet behavior was found above 2 K.  相似文献   

6.
Complexation processes that occur between cadmium(II) hexacyanoferrate(II) (Cd2[Fe(CN)6]) and 3d-metal ions M(II) (M = Mn, Co, Ni, Cu, Zn) in thin gelatin layers with the immobilized cadmium(II) hexacyanoferrates when brought in contact with aqueous solutions of d-metal chlorides are studied. Cd2+ ions were found to be replaced to some extent by M2+ ions of the indicated d metals (except for Mn(II)) and form binuclear (dd)-metal hexacyanoferrates(II). A complete replacement of Cd(II) and formation of M2[Fe(CN)6] was observed in none of the cases.  相似文献   

7.
The infrared spectra of isotopically dilute (matrix-isolated HDO molecules) isostructural compounds M(HCOO)2·2H2O (M=Mn,Fe,Co,Ni,Zn,Cu) are presented and discussed in the region of the OD stretching modes. According to the structural data the compounds under study are divided into two groups: in M(HCOO)2·2H2O (M=Mn,Ni,Zn) the H2O(1) molecules form stronger hydrogen bonds as compared to H2O(2); in M(HCOO)2·2H2O (M=Fe,Co,Cu) the H2O(2) molecules form stronger hydrogen bonds as compared to the H2O(1) molecules. The influence of the metal–water interactions (synergetic effect) and the unit-cell volumes (repulsion potential of the lattice) on the hydrogen bond strength within the isostructural series is discussed. The wavenumbers of the uncoupled OD stretching modes of the HDO molecules influenced by guest ions (Cu2+ ions matrix-isolated in M(HCOO)2·2H2O and M2+ ions matrix-isolated in Cu(HCOO)2·2H2O) are presented and commented. For example, the analysis of the spectra reveals that when Cu2+ ions are included in the structure of M(HCOO)2·2H2O the hydrogen bonds of the type M–OH2OCHO–Cu are considerably weaker as compared to those of the same type formed when M2+ ions are included in the structure of Cu(HCOO)2·2H2O if the cations remain unchanged.  相似文献   

8.
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 3-methylglutarates were prepared as solids with general formula MC6 H8 O4 ×n H2 O, where n =0–8. Their solubilities in water at 293 K were determined (7.0×10−2 −4.2×10−3 mol dm−3 ). The IR spectra were recorded and thermal decomposition in air was investigated. The IR spectra suggest that the carboxylate groups are mono- or bidentate. During heating the hydrated complexes lose some water molecules in one (Mn, Co, Ni, Cu) or two steps (Cd) and then mono- (Cu) or dihydrates (Mn, Co, Ni) decompose to oxides directly (Mn, Cu, Co) or with intermediate formation of free metals (Co, Ni). Anhydrous Zn(II) complex decomposes directly to the oxide ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Reactions of M+(H2O)n (M=V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n≤40) with NO were studied by Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry. Uptake of NO was observed for M=Cr, Fe, Co, Ni, Zn. The number of NO molecules taken up depends on the metal ion. For iron and zinc, NO uptake is followed by elimination of HNO and formation of the hydrated metal hydroxide, with strong size dependence. For manganese, only small HMnOH+(H2O)n?1 species, which are formed under the influence of room‐temperature black‐body radiation, react with NO. Here NO uptake competes with HNO formation, both being primary reactions. The results illustrate that, in the presence of water, transition‐metal ions are able to undergo quite particular and diverse reactions with NO. HNO is presumably formed through recombination of a proton and 3NO? for M=Fe, Zn, preferentially for n=15–20. For manganese, the hydride in HMnOH+(H2O)n?1 is involved in HNO formation, preferentially for n≤4. The strong size dependence of the HNO formation efficiency illustrates that each molecule counts in the reactions of small ionic water clusters.  相似文献   

10.
This study compares thermodynamic stability of clathrate compounds belonging to three isomorphous series: [Mpy4(NCO)2]*2Py (M = M(II) = Mn, Fe, Co, Ni), [Mpy4(NO3)2]*2Py (M = Mn, Co, Ni, Cu, Zn), and [CuPy4(NO3)2]*2G (G = pyridine, benzene, THF, chloroform). Thermodynamic parameters (Δ Hav 0, Δ Sav 0 and Δ G298 0 of the dissociation of the clathrates were determined from the dependences of the guest equilibrium pressure over the clathrates versus temperature (tensimetric method). Clathrate phases, when differed only in the host formula, demonstrated the same order of thermodynamic stability as one expected for the host complexes in solution: Mn < Fe < Co < Ni < Cu > Zn for M and NCO > NO3 for X. The influence of the host complex formulation was comparable to the effect of guest template, the effect observed in the third series with the variation of the guest component. This study illustrates a dramatic impact of the stability of the host molecule on the overall stability of the clathrate phases, the impact being comparable to a contribution arising from the host–guest complementarity.  相似文献   

11.
The crystal structures of three isotypic ortho­rhom­bic dihydrogendiphosphates, namely dipotassium copper(II)/nickel(II)/zinc(II) bis­(dihydrogendiphosphate) dihydrate, K2M(H2P2O7)2·2H2O (M = Cu, Ni and Zn), have been refined from single‐crystal data. The M2+ and K+ cations are located at sites of m symmetry, and the P atoms occupy general positions. These compounds also exist in triclinic forms with very similar structural features. The structures of both forms are compared, as well as the geometry of the MO6 octa­hedron, which is considerably elongated towards the water mol­ecules for M = Ni and Cu. Such elongation has not been observed among the other representatives of the family. A Raman study of the whole series K2M(H2P2O7)2·2H2O (M = Mn, Co, Ni, Cu, Zn and Mg) is reported.  相似文献   

12.
The preparation, structures, and magnetic properties of a series of metal formate perovskites [CH3NH3][MnxZn1?x(HCOO)3] were investigated. The isostructural solid solution can be prepared in the complete range of x=0–1. The metal–organic perovskite structures consist of an anionic NaCl type [MnxZn1?x(HCOO)3?] framework with CH3NH3+ templates located in the nearly cubic cavities and forming hydrogen bonds to the framework. When the proportion of Mn increased (i.e., x changed from 0 to 1), the lattice dimensions and metal–oxygen and metal–metal distances show a slight, nonlinear increase because of the increased averaged metal ionic radius and the local structure distortion. Through the series, the magnetism changes from the long‐range ordering of spin‐canted antiferromagnetism for x≥0.40 to paramagnetism when x≤0.30, and the percolation limit was estimated to be xP=0.31(2) for this simple cubic lattice. In the low‐temperature region, enhancement of magnetization and the gradual decrease and final disappearance of coercive field, remnant magnetization, and spin‐flop field upon dilution were observed through this isotropic Heisenberg magnetic series. IR spectroscopic and thermal properties were also investigated.  相似文献   

13.
两种镍的配合物[Ni(NH2CH2CH2CH2NH2)3]Cl2 (1)和[Ni(C6H4N2H4)2Cl2] (2)已经被合成并且通过红外和单晶X射线衍射分析对其进行了表征。在配合物1中,镍原子处于手性假八面体[NiN6]的几何构型中,它与三个1,3-丙二胺分子形成了三个六元环。在配合物2中,镍原子除了与两个o-苯二胺分子通过四个Ni-N键形成两个五元环外,它还与两个Cl原子配位形成了反式Ni-Cl2,这不同于以往报道过的镍的二胺配合物。这两个镍的配合物被MAO, MMAO或Et2AlCl活化后,对乙烯的二聚合或三聚合显示了很好的催化活性[对于配合物2,催化活性达到3.59×106 g mol-1 (Ni) h-1]。  相似文献   

14.
The crystal structures of the first‐row transition‐metal series of tris(ethylenediamine‐κ2N ,N ′)metal(II) diacetate, [M (C2H8N2)3](CH3CO2)2, with M = Mn, Fe, Co, Ni, Cu, and Zn, are reported. The complexes are all isostructural, crystallizing in a centrosymmetric triclinic cell and possessing an asymmetric unit composed of one [M (en)3]2+ cation and two symmetrically independent acetate anions. In the unit cell, the two complex cations are inversion‐generated enantiomers, possessing the energetically favoured Δ(λλλ) and Λ(δδδ) configurations. The complex cations and acetate anions combine through a series of N—H…O hydrogen bonds to generate a three‐dimensional network in the crystals. The other notable feature of the series is a significant Jahn–Teller distortion for the d 9 Cu2+ complex.  相似文献   

15.
We report on temperature-dependent infrared (IR) and Raman studies of [(CH3)2NH2][M(HCOO)3] metal–organic frameworks (MOFs) with M=Zn, Fe. Based on Raman and IR data, an assignment of the observed modes to respective vibrations of atoms is proposed. Temperature-dependent studies revealed abrupt changes below 160 K that are attributed to the onset of first-order structural phase transition. The most pronounced changes are observed for the modes corresponding to the dimethylammonium cation, especially those involving motion of hydrogen atoms. This behavior proves that the phase transition has an order–disorder character and is associated with the ordering of protons. The abrupt splitting of some modes related to the formate ion indicates that this transition is also associated with significant distortion of the metal-formate framework.  相似文献   

16.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The new ternary rhodium borides Mg3Rh5B2 and Sc3Rh5B2 (P4/mbm, Z = 2; a = 943.4(1) pm, c = 292.2(1) pm and a = 943.2(1) pm, c = 308.7(1) pm, respectively) crystallize with the Ti3Co5B2 type structure. Mg and Sc may in part be substituted by a variety of elements M. For M = Si and Fe, homogeneity ranges were found according to A3–xMxRh5B2 with 0 ≤ x ≤ 1.0 for A = Sc and with x up to 1.5 for A = Mg. Quaternary compounds with x = 1 (A2MRh5B2: A/M in short) were prepared with M = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sn (Co, Ni only with A = Mg; Sn only with A = Sc; P, As with deficiencies). Single crystal X‐ray investigations show an ordered substitutional variant of the Ti3Co5B2 type in which the M atoms are arranged in chains along [001] with intrachain and interchain M–M distances of about 300 pm and 660 pm, respectively. Measuring the magnetisation (1.7 K–800 K) of the phases Mg/Mn, Sc/Mn, Mg/Fe, and Sc/Fe reveals antiferromagnetic interactions in the first and dominating ferromagnetic intrachain interactions in the remaining ones. Interchain interactions of antiferromagnetic nature are evident in Sc/Mn and Mg/Fe leading to metamagnetism below TN = 130 K, while Sc/Fe behaves ferromagnetically below TC = 450 K. The overall trend towards stronger ferromagnetic interactions with increasing valence electron concentration is obvious.  相似文献   

18.
Two novel K/Mn phosphate hydrates, namely, dipotassium trimanganese dipyrophosphate dihydrate, K2Mn3(H2O)2[P2O7]2, (I), and potassium manganese dialuminium triphosphate dihydrate, KMn(H2O)2[Al2(PO4)3], (II), were obtained in the form of single crystals during a single hydrothermal synthesis experiment. Their crystal structures were studied by X‐ray diffraction. Both new compounds are members of the morphotropic series of phosphates with the following formulae: A2M3(H2O)2[P2O7]2, where A = K, NH4, Rb or Na and M = Mn, Fe, Co or Ni, and AM2+(H2O)2[M3+2(PO4)3], where A = Cs, Rb, K, NH4 or (H3O); M2+ = Mn, Fe, Co or Ni; and M3+ = Al, Ga or Fe. A detailed crystal chemical analysis revealed correlations between the unit‐cell parameters of the members of the series, their structural features and the sizes of the cations. It has been shown that a mixed type anionic framework is formed in (II) by aluminophosphate [(AlO2)2(PO4)2] layers, with a cationic topology similar to the Si/Al‐topology of the crystal structures of feldspars. A study of the magnetic susceptibility of (II) demonstrates a paramagnetic behaviour of the compound.  相似文献   

19.

A tridentate ONN donor ligand, 5-methyl-3-(2-hydroxyphenyl)pyrazole; H2L, was synthesized by reaction of 2-(3-ketobutanoyl)phenol with hydrazine hydrate. The ligand was characterized by IR, 1H NMR and mass spectra. 1H NMR spectra indicated the presence of the phenolic OH group and the imine NH group of the heterocyclic moiety. Different types of mononuclear metal complexes of the following formulae [(HL)2M][sdot]xH2O (M=VO, Co, Ni, Cu, Zn and Cd), [(HL)2M(H2O)2] (M=Mn and UO2) and [(HL)LFe(H2O)2] were obtained. The Fe(III) complex, [(HL)LFe(H2O)2] undergoes solvatochromism. Elemental analyses, IR, electronic and ESR spectra as well as thermal, conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared metal complexes. A square-pyramidal geometry is suggested for the VO(IV) complex, square-planar for the Cu(II), Co(II) and Ni(II) complexes, octahedral for the Fe(III) and Mn(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes, while the UO2(VI) complex is eight-coordinate. Transmetallation of the UO2(VI) ion in its mononuclear complex by Fe(III), Ni(II) or Cu(II) ions occurred and mononuclear Fe(III), Ni(II) and Cu(II) complexes were obtained. IR spectra of the products did not have the characteristic UO2 absorption band and the electronic spectra showed absorption bands similar to those obtained for the corresponding mononuclear complexes. Also, transmetallation of the Ni(II) ion in its mononuclear complex by Fe(III) has occurred. The antifungal activity of the ligand and the mononuclear complexes were investigated.  相似文献   

20.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号