首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differential collision cross section measurements for the scattering of hydrogen and deuterium atoms from argon and methane have been carried out with a crossed beams scattering apparatus which uses an oscillating supersonic beam as scattering target and a cryogenic bolometer as beam detector. Diffraction oscillations have been clearly resolved. The data are analyzed with a best fit computing procedure in terms of simple intermolecular energy functions. Well depth parameters for both Ar and CH4 are 60% larger as compared with those predicted by the geometric mean combination rule while the experimental minimum of the well positions are 10% smaller as given by the arithmetic mean combining rule.  相似文献   

2.
This work presents the vapor–liquid equilibrium calculations in an isothermal flash, applied to polymer solutions, using the Peng–Robinson cubic equation of state modified by Stryjek–Vera, and the mixing rule introduced by Wong–Sandler. This rule allows combining the rigid lattice thermodynamic model of Flory–Huggins to the Peng–Robinson–Stryjek–Vera equation of state. As the Gibbs free energy must be minimum in the equilibrium state, a stochastic optimization method, the simulated annealing algorithm, was used to find out the extreme of this thermodynamic potential.  相似文献   

3.
New combining rules are proposed for the well depth, ?, and interaction distance, σ, describing nonbonded interatomic forces for rare gas pair interactions. Concepts underlying current combining rules applied in simulations of macromolecular and polymer systems are shown to be incompatible with experimental data on the rare gases. The current combining rules are compared with the new results using the experimental data. Mathematical properties of combining rules are considered, and it is shown how to reduce combining rule formulas from a two-parameter to a single-parameter problem. It is also shown how to graphically analyze combining rules against experimental data. We demonstrate using this analysis technique that the rare gas potentials do not obey a single combining rule for the ? parameter but do follow a single combining rule for the σ parameter. Finally, we demonstrate that a combining rule using both ? and ω can be used to predict the ? parameters for the mixed rare gas pairs. © John Wiley & Sons, Inc.  相似文献   

4.
By assessing a large number of binary systems, it is shown that molecular modeling is a reliable and robust route to vapor–liquid equilibria (VLE) of mixtures. A set of simple molecular models for 78 pure substances from prior work is taken to systematically describe all 267 binary mixtures of these components for which relevant experimental VLE data is available. The mixture models are based on the modified Lorentz–Berthelot combining rule. Per binary system, one state independent binary interaction parameter in the energy term is adjusted to a single experimental vapor pressure. The unlike energy parameter is altered usually by less than 5% from the Berthelot rule. The mixture models are validated regarding the vapor pressure at other state points and also regarding the dew point composition, which is a fully predictive property in this work. In almost all cases, the molecular models give excellent predictions of the mixture properties.  相似文献   

5.
张伟伟  钟欣欣  司玉冰  赵仪 《化学进展》2012,24(6):1166-1174
随着电子转移理论在化学、材料科学、生物医学等领域的广泛应用,人们针对不同体系提出了多种电子转移理论模型。本文主要总结了近年来我们在non-Condon电子转移理论以及含时波包方法等方面的相关工作。首先阐述包含non-Condon效应的电子转移速率理论并用于二噻吩四硫富瓦烯有机半导体迁移率的计算。而后介绍了包含量子相干效应的含时波包方法,并初步用于研究二聚芴分子三三态能量转移过程。另外,本文还阐述了如何采用量子化学计算获得电子转移速率的结构参数。  相似文献   

6.
7.
An efficient implementation of the generalized van der Waals theory of fluids is presented for the calculation of surface tension in simple fluid mixtures. While detailed correlation analysis is avoided the dominant binding energy contribution and the negative contribution due to the nonlocal entropy are accounted for in the free energy density functional by simple physical approximations of the type originally introduced by van der Waals. Efficient computation is achieved by the use of a single-parameter optimization of a tanh-shaped profile representing the total density as well as the composition variation across the interface. This simple profile nevertheless incorporates the expected adsorption to the interface of the volatile component. Application is made to argon/krypton mixtures represented by Lennard-Jones potentials and Lorentz-Berthelot combining rules. Surface tension predictions compare well with both experimental observations and computer simulation results which also indicated close agreement in particle density profiles, especially if the Berthelot rule is amended with a binary interaction parameter slightly (3%) less than unity. Copyright 2001 Academic Press.  相似文献   

8.
Binary mixtures of two identical Lennard-Jones fluids with non-Lorentz–Berthelot combining rules have been simulated over the entire concentration range at three state points in order to examine the effect of cross interactions on the mixing properties, excess volumes and enthalpies, and partial molar volumes, and on the structure. Various combinations of deviations, in both the energy and size cross parameters, from the Lorentz–Berthelot rule, have been considered and the results analyzed using a recently proposed method based on the Tikhonov regularization. It is found that the most important is the size cross parameter and that by varying the combining rules a variety of qualitatively different behavior can be produced including, e.g., a minimum in the partial molar volumes observed otherwise only in complex mixtures of associating fluids; occurrence of this minimum seems to be associated with changes in the second coordination shell as witnessed by the pair correlation function.  相似文献   

9.
《Chemical physics letters》1986,127(2):172-177
Using electron charge density overlap integrals, a correlation procedure for estimating short-range repulsive intermolecular potentials has been investigated. It is found that the repulsive potentials correlate well with the density overlap integral divided by the square of the distance. A simple combining rule for inert gas atoms is obtained and compared with an accurate determination of repulsive potentials for all the mixed rare gases and with other combining rules.  相似文献   

10.
Recent experimental (low-rate) dynamic contact angles for 14 solid surfaces are interpreted in terms of their solid surface tensions. Universality of these experimental contact angle patterns is illustrated; other reasons that can cause data to deviate from the patterns are discussed. It is found that surface tension component approaches do not reflect physical reality. Assuming solid surface tension is constant for one and the same solid surface, experimental contact angle patterns are employed to deduce a functional relationship to be used in conjunction with the Young equation to determine solid surface tensions. The explicit form of such a relation is obtained by modifying Berthelot’s rule together with experimental data; essentially constant solid surface tension values are obtained, independent of liquid surface tension and molecular structure. A new combining rule is also derived based on an expression similar to one used in molecular theory; such a combining rule should allow a better understanding of the molecular interactions between unlike solid–liquid pairs.  相似文献   

11.
A model based upon the Peng-Robinson equation of state with the Wong-Sandler mixture combining rule (W-S MCR) can correlate phase equilibria in CO2 + H2O. The W-S MCR requires two energy parameters for liquid behavior and one interaction parameter for gas behavior, kij. In this paper, we present expressions for the energy parameters which cover a wide temperature range, and we use a new procedure to obtain kij by relating it to experimental cross second virial coefficients, Bij. The three-phase pressures calculated for this system using our proposed model agree with the experimental data within a fraction of 1 bar. The correlated phase behavior of CO2 + H2O appears to be accurate over the ranges 1 – 1000 bar and 298.15–623.15 K. The proposed model also confirms the advantage of using the W-S MCR for phase equilibrium calculations.  相似文献   

12.
《Fluid Phase Equilibria》2005,233(2):134-143
Henry’s law constants of the solutes methane, nitrogen, oxygen and carbon dioxide in the solvent ethanol are predicted by molecular simulation. The molecular models for the solutes are taken from previous work. For the solvent ethanol, a new rigid anisotropic united atom molecular model based on Lennard–Jones and coulombic interactions is developed. It is adjusted to experimental pure component saturated liquid density and vapor pressure data. Henry’s law constants are calculated by evaluating the infinite dilution residual chemical potentials of the solutes from 273 to 498 K with Widom’s test particle insertion. The prediction of Henry’s law constants without the use of binary experimental data on the basis of the Lorentz–Berthelot combining rule agree well with experimental data, deviations are 20%, except for carbon dioxide for which deviations of 70% are reached. Quantitative agreement is achieved by using the modified Lorentz–Berthelot combining rule which is adjusted to one experimental mixture data point.  相似文献   

13.
In this work, the phenomenon of double retrograde vaporization (DRV) is simulated using the Peng–Robinson equation of state with the classical mixing rules and several combining rules for the cross-energy and cross-co-volume parameters. The binary interaction parameters are set equal to zero in all cases, i.e., the calculations are entirely predictive. An interesting conclusion is that the predictions using the classical combining rules (geometric mean rule for aij and arithmetic mean rule for bij) provide the best agreement with the experimental data for all the systems tested: methane + n-butane, methane + n-pentane, ethane + limonene, and ethane + linalool. Another interesting observation is that several combining rules for bij, other than the arithmetic mean rule, predict the existence of three phases in equilibrium in a very narrow temperature range close to the critical temperature of methane in the methane + n-pentane system, even though, literature data indicates that n-hexane is the first n-alkane to present partial liquid phase immiscibility with methane.  相似文献   

14.
The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and ρ* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure-volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, υ* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]  相似文献   

15.
Huron, M.-J. and Vidal, J., 1979. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 3: 255-271.Good correlations of vapour-liquid equilibria can be achieved by applying the same two-parameter cubic equation of state to both phases. The results primarily depend on the method used for calculating parameters and, for mixtures, on the mixing rule. True parameters are the covolume b and the energy parameter a/b. For this latter one, deviations from a linear weighting rule are closely connected to the excess free energy at infinite pressure. Thus any mixing rule gives a model for the excess free energy, or any accepted models for this property can be used as mixing rules.From the above, an empirical polynomial mixing rule is used for data smoothing and evaluation, while for practical work a local composition model is used. The mixing rule thus obtained can be reduced to the classical quadratic rule for some easily predicted values of the interaction energies. For highly polar systems, it includes three adjustable parameters. Using literature data, the new mixing rule is applied, in the low and high pressure range, to binary mixtures with one or two polar compounds, giving good data correlation and sometimes avoiding false liquid-liquid immiscibility.  相似文献   

16.
《Fluid Phase Equilibria》2001,178(1-2):87-95
Mixing rules are necessary when equations of state for pure fluids are used to calculate various thermodynamic properties of fluid mixtures. The well-known van der Waals one-fluid (vdW1) mixing rules are proved to be good ones and widely used in different equations of state. But vdW1 mixing rules are valid only when molecular size differences of components in a mixture are not very large. The vdW1 type density-dependent mixing rule proposed by Chen et al. [1] is superior for the prediction of pressure and vapor–liquid equilibria when components in the mixture have very different sizes. The extension of the mixing rule to chain-like molecules and heterosegment molecules was also made with good results. In this paper, the comparison of different mixing rules are carried out further for the prediction of the density and the residual internal energy for binary and ternary Lennard–Jones (LJ) mixtures with different molecular sizes and different molecular interaction energy parameters. The results show that the significant improvement for the prediction of densities is achieved with the new mixing rule [1], and that the modification of the mixing rule for the interaction energy parameter is also necessary for better prediction of the residual internal energy.  相似文献   

17.
有机化合物的光谱及激发能存在着良好的同系线性规律。前文曾用HMO法对多联苯体系的同系线性规律进行了讨论,说明了对联多苯的共轭作用比间联多苯强,而后者共轭作用很弱,这可从光谱得到证实。近来,徐光宪等探讨了同系线性规律的量子化学基础,根据多烯中键长交替现象提出了MHMO法。  相似文献   

18.
本文用DPCILO, CNDO程序分别计算了一些第四级铵离子不同构象的能量及电荷密度, 探讨Hofmann消除反应的机理, 结果表明构象规则能较好地说明Hofmann消除反应的机理, 只是“直链型”烷基的消除反应应按顺式E_2机理进行。  相似文献   

19.
It is suggested that simple electronic shielding effects induced by wave function antisymmetrization tend to govern the energy ordering of singlet and triplet terms within a two-electron atomic configuration. This approach gives rise to the following alternating rule: For the term of greatest orbital angular momentum within a configuration, the triplet lies below the singlet. The energy ordering reverses for the term of next highest angular momentum, and continues to alternate with each change of one unit in the orbital angular momentum until the term of lowest angular momentum is reached. In an examination of over 600 energy levels of the elements and their ions, the alternating rule reliably orders singlet–triplet energy levels in some 90% of the cases.  相似文献   

20.
根据基于荧光猝灭原理的化学传感膜的结构特征和发光机理,推导并提出量化作用于膜传感器的多种荧光猝灭因素的多元线性模型.结合三杯法,该模型可简便地求出反映不同荧光猝灭机理的特征参数.通过建立的数学模型,测定并计算了芘丁酸膜传感器对应于呋喃妥因等23种药物多种荧光猝灭因素的响应数据和响应参数.结果表明,传感膜对分析物的响应特征往往能得到主要猝灭因素响应模型的近似反映,这为基于荧光猝灭原理的化学传感器定量分析模型的建立提供了可借鉴的思路和方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号