首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the electrocatalytic reduction of oxygen on thin anthraquindisulfonate (AQDS)/poplypyrrole (PPy) composite film modified electrodes and its application to the electrooxidation of azo dye‐amaranth. The polymer‐coated cathode exhibited good electrocatalytic activity towards oxygen reduction reaction (ORR), and allowed the formation of strong oxidant hydroxyl radical (.OH) in the medium via Electro‐Fenton's reaction between cathodically generated H2O2 and added or regenerated Fe2+. The electrochemical behaviors of ORR in various pH solutions were described using cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometric (CA) techniques. The effect of solution pH on amaranth mineralization by the Fe2+/H2O2 and Fe3+/H2O2 electrooxidation systems was studied. In addition, the long‐term electrocatalytic activity and stability of the AQDS/PPy composite film during multiple experimental runs were also examined electrochemically.  相似文献   

2.
The electrochemical properties of anthraquinone monosulfonate (AQS) adsorbed on the basal plane of chemically-reduced graphene oxide (RGO) by π–π stacking interaction were investigated. The AQS/RGO nanocomposites were synthesized via a simple reduction–adsorption method and characterized with various techniques, and the surface concentration of AQS on the basal plane of RGO was estimated to be 1.72?×?10?12 mol cm?2. Electrochemical tests showed that the AQS/RGO nanocomposites accelerated the heterogeneous electron transfer, when ferro/ferricyanide was used as a redox probe, and RGO facilitated the electron transfer between AQS and the surface of glassy carbon electrode, producing a well-defined redox couple centered at ?0.490 V versus SCE at neutral medium. Compared with AQS and RGO modified glassy carbon (GC) electrode, the AQS/RGO nanocomposites showed better electrocatalytic activity towards oxygen reduction reaction. Rotating disk electrode data showed that the reduction of O2 on AQS/RGO/GC electrode underwent a two-electron process to H2O2 at low overpotential and shifted to four-electron reduction to H2O at relatively high overpotential. The present work demonstrates that AQS can be an efficient catalyst when noncovalently functionalized on the basal plane of RGO for electrochemical applications.  相似文献   

3.
张国权  杨凤林 《催化学报》2007,28(6):504-508
在水溶液中制备了掺杂蒽醌磺酸盐(AQS)的聚吡咯(PPy)/玻碳复合膜修饰电极,采用循环伏安法和旋转圆盘电极技术研究了该修饰电极在不同pH值溶液中的电化学行为以及在pH=5.5的磷酸盐缓冲溶液中对氧还原反应的电催化性能和动力学.结果表明,与裸玻碳电极相比,PPy膜的存在不仅降低了AQS的反应电位和峰电位差,而且增大了其氧化还原反应的峰电流,H2AQ/HAQ-氧化还原对的电离常数为9.5.AQS/PPy膜修饰电极上氧的还原主要是两电子还原为H2O2的不可逆过程,H2AQ对氧还原反应起主要催化作用,还原过程符合异相氧化还原催化机理.该修饰电极具有良好的电化学重现性.  相似文献   

4.
We reported the functionalization of multiwalled carbon nanotube (MWCNT) with 4‐aminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5) medium. The resulting 4‐aminobenzoyl‐functionalized MWCNT (AF‐MWCNT) was used as a platform for the grafting of polypyrrole (PPy) in ammonium persulfate (APS)/aqueous hydrochloric acid solution to produce PPy‐grafted MWCNT (PPy‐g‐MWCNT) composite. After dedoping with alkaline treatment, PPy‐g‐MWCNT displayed 20 times higher electrical conductivity than that of PPy. The current density and cycle stability of PPy‐g‐MWCNT composite were also remarkably improved compared with those of PPy homopolymer, suggesting that an efficient electron transfer between PPy and MWCNT was possible through covalent links. In addition, PPy‐g‐MWCNT displayed high electrocatalytic activity for oxygen reduction reaction (ORR). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

6.
Polymeric carbon nitride modified with selected heteroatom dopants was prepared and used as a model photocatalyst to identify and understand the key mechanisms required for efficient photoproduction of H2O2 via selective oxygen reduction reaction (ORR). The photochemical production of H2O2 was achieved at a millimolar level per hour under visible‐light irradiation along with 100 % apparent quantum yield (in 360–450 nm region) and 96 % selectivity in an electrochemical system (0.1 V vs. RHE). Spectroscopic analysis in spatiotemporal resolution and theoretical calculations revealed that the synergistic association of alkali and sulfur dopants in the polymeric matrix promoted the interlayer charge separation and polarization of trapped electrons for preferable oxygen capture and reduction in ORR kinetics. This work highlights the key features that are responsible for controlling the photocatalytic activity and selectivity toward the two‐electron ORR, which should be the basis of further development of solar H2O2 production.  相似文献   

7.
《Electroanalysis》2006,18(16):1564-1571
The work details the electrocatalysis of oxygen reduction reaction (ORR) in 0.5 M H2SO4 medium on a modified electrode containing a film of polyaniline (PANI) grafted multi‐wall carbon nanotube (MWNT) over the surface of glassy carbon electrode. We have fabricated a novel modified electrode in which conducting polymer is present as connected unit to MWNT. The GC/PANI‐g‐MWNT modified electrode (ME) is fabricated by electrochemical polymerization of a mixture of amine functionalized MWNT and aniline with GC as working electrode. Cyclic voltammetry and amperometry are used to demonstrate the electrocatalytic activity of the GC/PANI‐g‐MWNT‐ME. The GC/PANI‐g‐MWNT‐ME exhibits remarkable electrocatalytic activity for ORR. A more positive onset potential and higher catalytic current for ORR are striking features of GC/PANI‐g‐MWNT‐ME. Rapid and high sensitivity of GC/PANI‐g‐MWNT‐ME to ORR are evident from the higher rate constant (7.92×102 M?1 s?1) value for the reduction process. Double potential chronoamperometry and rotating disk and rotating ring‐disk electrode (RRDE) experiments are employed to investigate the kinetic parameters of ORR at this electrode. Results from RDE and RRDE voltammetry demonstrate the involvement of two electron transfer in oxygen reduction to form hydrogen peroxide in acidic media.  相似文献   

8.

Conducting polymer composites of polyvinylferrocene and polypyrrole (PVF/PPy) were synthesized chemically by the in situ polymerization of pyrrole in the presence of PVF using FeCl3 as oxidant. Acetic (CH3COOH) and boric (H3BO3) acids were used as the synthesis medium. Effects of the synthesis medium on the properties of the PVF/PPy composite were investigated. The PVF/PPy composites and homopolymers were characterized by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and magnetic susceptibility techniques. Conductivity measurements were performed using the four‐probe technique. We found that the conductivities of PVF/PPy‐H3BO3 (1.19 S cm?1) and PVF/PPy‐CH3COOH (4.5×10?1 S cm?1) increased relative to those of the homopolymers of PPy‐H3BO3 (2.1×10?2 S cm?1) and PPy‐CH3COOH (1.2×10?2 S cm?1) due to the interaction of PVF with the pyrrole moiety. The stability of all homopolymers and composites were investigated by thermogravimetric analysis and by conductivity measurements during heating‐cooling cycles. There was a small drop in conductivity caused by the annealing of PVF/PPy composites at 70°C. The conductivity of all samples increased with temperature and exhibited stable electrical behavior with increasing temperature. TGA analysis of samples showed that the composites were more stable than the homopolymers or PVF separately. The magnetic susceptibility values of samples were negative, except for PVF/PPy‐H3BO3. Morphology changes of the composites investigated by scanning electron microscopy (SEM), attributed to synthesis conditions, have a significant effect on their conductivity.  相似文献   

9.
To apply electrically nonconductive metal–organic frameworks (MOFs) in an electrocatalytic oxygen reduction reaction (ORR), we have developed a new method for fabricating various amounts of CuS nanoparticles (nano‐CuS) in/on a 3D Cu–MOF, [Cu3(BTC)2?(H2O)3] (BTC=1,3,5‐benzenetricarboxylate). As the amount of nano‐CuS increases in the composite, the electrical conductivity increases exponentially by up to circa 109‐fold, while porosity decreases, compared with that of the pristine Cu‐MOF. The composites, nano‐CuS(x wt %)@Cu‐BTC, exhibit significantly higher electrocatalytic ORR activities than Cu‐BTC or nano‐CuS in an alkaline solution. The onset potential, electron transfer number, and kinetic current density increase when the electrical conductivity of the material increases but decrease when the material has a poor porosity, which shows that the two factors should be finely tuned by the amount of nano‐CuS for ORR application. Of these materials, CuS(28 wt %)@Cu‐BTC exhibits the best activity, showing the onset potential of 0.91 V vs. RHE, quasi‐four‐electron transfer pathway, and a kinetic current density of 11.3 mA cm?2 at 0.55 V vs. RHE.  相似文献   

10.
To apply electrically nonconductive metal–organic frameworks (MOFs) in an electrocatalytic oxygen reduction reaction (ORR), we have developed a new method for fabricating various amounts of CuS nanoparticles (nano‐CuS) in/on a 3D Cu–MOF, [Cu3(BTC)2⋅(H2O)3] (BTC=1,3,5‐benzenetricarboxylate). As the amount of nano‐CuS increases in the composite, the electrical conductivity increases exponentially by up to circa 109‐fold, while porosity decreases, compared with that of the pristine Cu‐MOF. The composites, nano‐CuS(x wt %)@Cu‐BTC, exhibit significantly higher electrocatalytic ORR activities than Cu‐BTC or nano‐CuS in an alkaline solution. The onset potential, electron transfer number, and kinetic current density increase when the electrical conductivity of the material increases but decrease when the material has a poor porosity, which shows that the two factors should be finely tuned by the amount of nano‐CuS for ORR application. Of these materials, CuS(28 wt %)@Cu‐BTC exhibits the best activity, showing the onset potential of 0.91 V vs. RHE, quasi‐four‐electron transfer pathway, and a kinetic current density of 11.3 mA cm−2 at 0.55 V vs. RHE.  相似文献   

11.
《中国化学会会志》2018,65(6):687-695
In this work, the PPy/Fe3O4@TiO2 composite was synthesized and characterized by X‐ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and magnetic measurements (using a vibrating sample magnetometer). The adsorption performance of PPy/Fe3O4@TiO2 composite for Cr(VI) ions was evaluated by UV irradiation. The effects of pH, adsorbent dose, contact time, and the initial concentration on the adsorption performance of Cr(VI) onto PPy/Fe3O4@TiO2 were investigated. The maximum adsorption capacity of Cr(VI) upon doped PPy/Fe3O4@TiO2 is 85.30 mg/g at room temperature. The total adsorption process likely follows the Langmuir model and pseudo‐second‐order kinetics. Our study suggests that the PPy/Fe3O4@TiO2 composite can be efficiently used for the adsorption of Cr(VI) ions.  相似文献   

12.
《Electroanalysis》2018,30(3):436-444
Electrocatalysts perform a key role in increasing efficiency of the oxygen reduction reaction (ORR) and as a result, efforts have been made by the scientific community to develop novel and cheap materials that have the capability to exhibit low ORR overpotentials and allow the reaction to occur via a 4 electron pathway, thereby mimicking as close as possible to traditionally utilised platinum. In that context, two different types of carbon nanodots (CNDs) with amide (CND‐CONH2) and carboxylic (CND‐COOH) surface groups, have herein been fabricated and shown to exhibit excellent electrocatalytic activity towards the ORR in acid and basic media (0.1 M H2SO4 and 0.1 M KOH). CND surface modified carbon screen‐printed electrodes allow for a facile electrode modification and enabling the study of the CNDs electrocatalytic activity towards the ORR. CND‐COOH modified SPEs are found to exhibit improved ORR peak current and reduced overpotential by 21.9 % and 26.3 %, respectively compared to bare/unmodified SPEs. Additionally, 424 μg cm−2 CND‐COOH modified SPEs in oxygenated 0.1 M KOH are found to facilitate the ORR via a near optimal 4 (3.8) electron ORR pathway. The CNDs also exhibited excellent long‐term stability and tolerance with no degradation being observed in the achievable current with the ORR current returning to the baseline level within 100 seconds of exposure to a 1.5 M solution of methanol. In summary, the CND‐COOH could be utilised as a cathodic electrode for PEMFCs offering greater stability than a commercial Pt electrode.  相似文献   

13.
This study reports a noble metal-free robust inorganic photocatalyst for H2O2 synthesis via two-electron oxygen reduction reaction (ORR). Antimony-doped tin oxide nanorods were heteroepitaxially grown from rutile TiO2 seed crystals with an orientation of (001)ATO//(001)TiO2 (ATO−NR//TiO2,//denotes heteroepitaxial junction) by a hydrothermal method. UV-light irradiation of ATO−NR//TiO2 particles stably and continuously produces H2O2 from aerated aqueous solution of ethanol. Electrochemical measurements using rotating electrodes show that Sb-doping into SnO2 greatly enhances the electrocatalytic activity for two-electron ORR. The striking photocatalytic activity of ATO−NR//TiO2 stems from the effective charge separation, electrocatalytic activity for two-electron ORR, low catalytic activity for H2O2 decomposition, and extraordinary robustness.  相似文献   

14.
Herein, we developed a partially controlled pyrolysis strategy to create evenly distributed NiO nanoparticles within NiFe‐MOF nanosheets (MOF NSs) for electrochemical synthesis of H2O2 by a two‐electron oxygen reduction reaction (ORR). The elemental Ni can be partially transformed to NiO and uniformly distributed on the surface of the MOF NSs, which is crucial for the formation of the particular structure. The optimized MOF NSs‐300 exhibits the highest activity for ORR with near‐zero overpotential and excellent H2O2 selectivity (ca. 99 %) in 0.1 m KOH solution. A high‐yield H2O2 production rate of 6.5 mol gcat?1 h?1 has also been achieved by MOF NSs‐300 in 0.1 m KOH and at 0.6 V (vs. RHE). In contrast to completely pyrolyzed products, the enhanced catalytic activities of partially pyrolyzed MOF NSs‐300 originates mainly from the retained MOF structure and the newly generated NiO nanoparticles, forming the coordinatively unsaturated Ni atoms and tuning the performance towards electrochemical H2O2 synthesis.  相似文献   

15.
《Electroanalysis》2004,16(17):1444-1450
The multi‐walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc‐NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O2 reduction. The reduction peak potential of O2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co‐exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MWNTs/CoTMPyP)n prepared by layer‐by‐layer method were investigated, and the results showed that the peak current of O2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.  相似文献   

16.
Layered two‐dimensional (2D) conjugated metal–organic frameworks (MOFs) represent a family of rising electrocatalysts for the oxygen reduction reaction (ORR), due to the controllable architectures, excellent electrical conductivity, and highly exposed well‐defined molecular active sites. Herein, we report a copper phthalocyanine based 2D conjugated MOF with square‐planar cobalt bis(dihydroxy) complexes (Co‐O4) as linkages (PcCu‐O8‐Co) and layer‐stacked structures prepared via solvothermal synthesis. PcCu‐O8‐Co 2D MOF mixed with carbon nanotubes exhibits excellent electrocatalytic ORR activity (E1/2=0.83 V vs. RHE, n=3.93, and jL=5.3 mA cm?2) in alkaline media, which is the record value among the reported intrinsic MOF electrocatalysts. Supported by in situ Raman spectro‐electrochemistry and theoretical modeling as well as contrast catalytic tests, we identified the cobalt nodes as ORR active sites. Furthermore, when employed as a cathode electrocatalyst for zinc–air batteries, PcCu‐O8‐Co delivers a maximum power density of 94 mW cm?2, outperforming the state‐of‐the‐art Pt/C electrocatalysts (78.3 mW cm?2).  相似文献   

17.
The nanocomposite with polypyrrole (PPy) confined in ordered mesoporous silica SBA‐15 channels was synthesized by in situ electropolymerization. X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption, and FT‐IR studies indicated that the nanocomposite has the well‐ordered hexagonal structures and PPy was in situ polymerized into the channels instead of the outer surface of SBA‐15. Furthermore, the PPy/SBA‐15 nanocomposite was used as an electrode modifier. We found that the nanocomposite‐modified electrode exhibited good electrocatalytic activities for hydroquinone oxidation where PPy chains could facilitate the electron transfer between molecular sieves and electrode surface. Three dihydroxybenzene isomers (hydroquinone, catechol and resorcinol) have been successfully detected at PPy/SBA‐15 modified electrode by preconcentration of the analyte.  相似文献   

18.
以1-丁基-3-甲基咪唑六氟磷酸盐离子液体作为溶剂和支持电解质,分别在铂电极和导电玻璃电极上电化学聚合得到了聚吡咯,聚合过程中发现,在离子液体中聚合的循环伏安图,其电流的变化和传统有机溶剂中的不同,通过交流阻抗技术研究了修饰电极的电化学性质,采用在线紫外、拉曼、红外谱对聚吡咯进行了光谱表征,得到了聚吡咯的特征峰,采用扫描电镜研究了聚合物的形貌。最后将修饰电极应用到了对对苯二酚的催化反应当中,显示了一定的催化作用。  相似文献   

19.
In nature, cytochrome c oxidases catalyze the 4e oxygen reduction reaction (ORR) at the heme/Cu site, in which CuI is used to assist O2 activation. Because of the thermodynamic barrier to generate CuI, synthetic Fe-porphyrin/Cu complexes usually show moderate electrocatalytic ORR activity. We herein report on a Co-corrole/Co complex 1-Co for energy-efficient electrocatalytic ORR. By hanging a CoII ion over Co corrole, 1-Co realizes electrocatalytic 4e ORR with a half-wave potential of 0.89 V versus RHE, which is outstanding among corrole-based electrocatalysts. Notably, 1-Co outperforms Co corrole hanged with CuII or ZnII. We revealed that the hanging CoII ion can provide an electron to improve O2 binding thermodynamically and dynamically, a function represented by the biological CuI ion of the heme/Cu site. This work is significant to present a remarkable ORR electrocatalyst and to show the vital role of a second-sphere redox-active metal ion in promoting O2 binding and activation.  相似文献   

20.
Facile evaluation of oxygen reduction reaction (ORR) kinetics for electrocatalysts is critical for sustainable fuel-cell development and industrial H2O2 production. Despite great success in ORR studies using mainstream strategies, such as the membrane electrode assembly, rotation electrodes, and advanced surface-sensitive spectroscopy, the time and spatial distribution of reactive oxygen species (ROS) intermediates in the diffusion layer remain unknown. Using time-dependent electrochemiluminescence (Td-ECL), we report an intermediate-oriented method for ORR kinetics analysis. Owing to multiple ultrasensitive stoichiometric reactions between ROS and the ECL emitter, except for electron transfer numbers and rate constants, the potential-dependent time and spatial distribution of ROS were successfully obtained for the first time. Such exclusively uncovered information would guide the development of electrocatalysts for fuel cells and H2O2 production with maximized activity and durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号