首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The energetic complex, [Co(2,4,3‐tpt)2(H2O)2] · 2NO3 ( 1 ) [2,4,3‐tpt = 3‐(2‐pyridyl)‐ 4‐(4'‐pyridyl)‐5‐(3′‐pyridyl)‐1H‐1,2,4‐triazole], was synthesized and characterized by single‐crystal X‐ray diffraction, thermogravimetric analyses, elemental analysis, X‐ray powder diffraction, and IR spectroscopy. The title complex is a 0D motif with a unit of [Co(2,4,3‐tpt)2(H2O)2]2+, whereas NO3 ions not only act as counter anions to balance the charge of the CoII cations, but also provide hydrogen bond interactions, which make the 0D motif into a 1D chain. Furthermore, the thermal decomposition of ammonium perchlorate (AP) with complex 1 was explored by differential scanning calorimetry (DSC) over the temperature range from 50–500 °C. AP is completely decomposed in a shorter time in the presence of complex 1 , and the decomposition heat of the mixture is 2.143 kJ g–1, significantly higher than pure AP. By Kissinger's method, the ratio of Ea/ln(A) is 11.87 for the mixture, which indicates that complex 1 shows good catalytic activity toward AP decomposition.  相似文献   

2.
In the present work, CuO nanoparticles grown on three‐dimensional nitrogen‐doped graphene‐based frameworks (CuO@3D‐(N)GFs) were synthesized using a two‐step method. After the synthesis of three‐dimensional nitrogen‐doped graphene, CuO nanoparticles were deposited on it, by adding cupric acetate followed by thermal treatment. Different analysis methods were used to characterize the products. The as‐prepared nanocomposite was used as a promising catalyst for thermal decomposition of ammonium perchlorate (AP) as one of the most common oxidizer in composite propellants. Differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA) techniques were used to investigate the thermal decomposition of ammonium perchlorate. According to the DSC/TGA, high temperature decomposition of AP decreased to 111 °C in the presence of 4% CuO@3D‐(N)GFs and the total heat release (ΔH) from decomposition of AP increased to 1893 J g?1 which is much more than 590 J g?1 for pure AP.  相似文献   

3.
Energetic copper(II) complexes based on 3,5‐dinitrobenzoic acid (HDNBA) and 1,5‐diaminotetrazole (DAT), Cu(DNBA)2(H2O)2 ( 1 ) and Cu(DAT)2(DNBA)2 ( 2 ) were synthesized and characterized by elemental analysis, IR spectroscopy, single‐crystal and powder X‐ray diffraction. In both complexes, CuII was coordinated to a plane tetragon, by four oxygen atoms from two DNBA ions and two coordinated H2O molecules for 1 , and by two oxygen atoms and two nitrogen atoms from different DNBA ions and DAT ligands for 2 . Differential scanning calorimetry (DSC) and thermogravimetry (TG) analyses were employed to measure the thermal decomposition processes and non‐isothermal kinetics parameters of the complexes. The thermal decomposition onset temperatures of 1 and 2 are 321 and 177 °C. The apparent activation energies of the first exothermic decomposition peaks of 1 and 2 are 247.2 and 185.2 kJ · mol–1. Both 1 (35 J, > 360 N) and 2 (12.5 J, > 360 N) are less sensitive than RDX. The catalytic effects on the decomposition of ammonium perchlorate (AP) of 1 and 2 were studied by DSC. All results supported the potential applications of the energetic complexes as additives of solid rocket propellants.  相似文献   

4.
《Analytical letters》2012,45(10):2179-2189
Abstract

In the presence of Pb(Ac)2, the silicon dioxide nanoparticle containing rhodamine 6G (R‐SiO2) can emit strong and stable solid substrate‐room temperature phosphorescence (SS‐RTP) signal on the surface of acetyl cellulose membrane (ACM) at λexem=482/649 nm. It was found in the research that specific affinity adsorption reaction between triticum vulgare lectin (WGA) (which was labeled with luminescent silicon dioxide nanoparticle) and alkaline phosphatase (AP) can be carried out on the surface of ACM. The product of the reaction can emit stronger SS‐RTP signal. A new method of SS‐RTP for the determination of AP was established, based on an affinity adsorption reaction between AP and WGA labeled with nanoparticles containing rhodanime 6G luminescent molecules. The linear range of this WGA‐AP‐WGA‐R‐SiO2 method is 1.00–360.00 ag AP spot?1 (sample volume: 0.40 µL spot?1, corresponding concentration range: 2.50–900.00 fg mL?1). The regression equation of working curve is ΔIp=16.24+0.8856 mAP (ag spot?1), r=0.9993. Detection limit of this method calculated by 3Sb/k is 0.14 ag spot?1. After 11‐fold replicate measurements, RSD are 3.9% and 3.1% for the systems containing 1.00 and 360.00 ag AP spot?1, respectively. Compared with R‐SiO2‐WGA‐AP method (detection limit: 0.45 ag spot?1, corresponding concentration range: 2.00–320.00 ag spot?1), the sensitivity of WGA‐AP‐WGA‐R‐SiO2 method was obviously improved and the linear range was wider. The sensitivity, accuracy, and precision of this method are high. It has been successfully applied to determine AP in human serum.  相似文献   

5.
To overcome migration problems of ferrocene‐based burning rate catalysts and to enhance burning rate of ammonium perchlorate (AP)‐based propellants, eleven ferrocene‐based compounds ( 1 – 11 ) were synthesized by the condensation reaction of ferrocenecarbonyl chloride with corresponding amines and alcohols. The synthesis of 1 – 11 was confirmed using 1H NMR, Fourier transform infrared and UV–visible spectroscopy. Their electrochemical properties were analyzed using cyclic voltammetry. The compounds showed redox behavior due to the presence of ferrocene. Their catalytic behavior in the thermal decomposition of AP was investigated using thermogravimetry (TG) and differential TG (DTG). In the presence of 5 wt% 1 – 11 , the thermal decomposition temperature of AP was significantly decreased. TG and DTG analyses showed that 1 – 11 had a good catalytic effect in the thermal decomposition of AP. Anti‐migration studies showed that migration of 1 – 11 was slower than that of 2,2‐bis(ethylferrocenyl)propane (catocene) and ferrocene. The effect of the presence of polar elements like oxygen and nitrogen on anti‐migration behavior of small ferrocene‐based compounds was also investigated. Oxygen‐containing compounds showed better anti‐migration behavior than nitrogen‐containing compounds.  相似文献   

6.
A novel ammonium perchlorate (AP)/aluminum (Al)/iron oxide (Fe2O3) nano-thermites was prepared by orderly using sol–gel, wet impregnation, and solvent-anti-solvent processes. Samples prepared in this work were characterized by scanning electron microscope (SEM), nitrogen adsorption–desorption tests, X-ray diffraction (XRD), and differential scanning calorimetric (DSC) measurements. The results showed that AP and nano-aluminum were dispersed in the pores of the iron oxide gel, resulting in a large specific surface area (84.7 m2 g?1). The XRD results showed that AP dispersed homogeneously in the energetic composites at nano-scale. DSC analyses indicate that the Al/Fe2O3 nano-thermites played a catalytic role in the thermal decomposition of AP, thus the interaction of thermite reaction was greatly enhanced by accelerated decomposition of AP. The experimental results showed that the as-prepared AP/Al/Fe2O3 nano-thermites were of high energy, making it a competitive candidate material in the field of micro-propellants.  相似文献   

7.
An experimental study of the thermal decomposition of a β‐hydroxy alkene, 3‐methyl‐3‐buten‐1‐ol, in m‐xylene solution, has been carried out at five different temperatures in the range of 513.15–563.15 K. The temperature dependence of the rate constants for the decomposition of this compound in the corresponding Arrhenius equation is given by ln k (s?1) = (25.65 ± 1.52) ? (17,944 ± 814) (kJ·mol?1T?1. A computational study has been carried out at the M05–2X/6–31+G(d,p) level of theory to calculate the rate constants and the activation parameters by the classical transition state theory. There is a good agreement between the experimental and calculated rate constants and activation Gibbs energies. The bonding characteristics of reactant, transition state, and products have been investigated by the natural bond orbital analysis, which provides the natural atomic charges and the Wiberg bond indices. Based on the results obtained, the mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state, being a concerted and slightly asynchronous process. The results have been compared with those obtained previously by us (Struct Chem 2013, 24, 1811–1816) for the thermal decomposition of 3‐buten‐1‐ol, in m‐xylene solution. We can conclude that in the compound studied in this work, 3‐methyl‐3‐buten‐1‐ol, the effect of substitution at position 3 by a weakly activating CH3 group is the stabilization of the transition state formed in the reaction and therefore a small increase in the rate of thermal decomposition.  相似文献   

8.
Polyimide (PI)‐based nanocomposites containing aminophenyl functionalized multiwalled carbon nanotubes (AP‐MWCNTs) obtained through a diazonium salt reaction was successfully prepared by in situ polymerization. PI composites with different loadings of AP‐MWCNTs were fabricated by the thermal conversion of poly(amic acid) (PAA)/AP‐MWCNTs. The mechanical and electrical properties of the AP‐MWCNTs/PI composites were improved compared with those of pure PI due to the homogeneous dispersion of AP‐MWCNTs and the strong interfacial covalent bonds between AP‐MWNTs and the PI matrix. The conductivity of AP‐MWNTs/PI composites (5:95 w/w) was 9.32 × 10?1 S/cm which was about 1015 times higher than that of Pure PI. The tensile strength and tensile modules of the AP‐MWCNTs/PI composites with 0.5 wt % of AP‐MWCNTs were increased by about 77% (316.9 ± 10.5 MPa) and 25% (8.30 ± 1.10 GPa) compared to those of pure PI, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 960–966  相似文献   

9.
The photopolymerization efficiency of pyrene (Py), 1‐acetylpyrene (AP), and 1‐(bromoacetyl)pyrene (BP) for copolymerization of n‐butylacrylate (BA) with methylmethacrylate (MMA) was compared. A kinetic study of solution copolymerization in DMSO at 30 ± 0.2°C showed that the Py could not initiate copolymerization even after 20 h, whereas with AP as initiator, less than 1% conversion was observed. However, introduction of a Br in α‐methyl group of AP significantly enhanced the percent conversion. The kinetics and mechanism of copolymerization of BA with MMA using BP as photoinitiator have been studied in detail. The system follows nonideal kinetics (Rp α [BP]0.67[BA]1[MMA]0.98), and degradative solvent transfer reasonably explains these kinetic nonidealities. The monomer reactivity ratios (MRRs) of MMA and BA have been estimated by the Finemann–Ross and Kelen–Tudos methods, by analyzing copolymer compositions determined by 1H‐NMR spectra. The values of r1 (MMA) and r2 (BA) were found to be 2.17 and 0.44, respectively, which suggested the high concentration of alternating sequences in the random copolymers obtained. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 261–267, 2007  相似文献   

10.
Twenty‐eight novel ferrocenyl ionic compounds, composed of mononuclear 1‐ferrocenylmethylalkyldimethylammoniums, 1‐ferrocenylmethyl‐3‐alkylimidazoliums, or their dinuclear analogs and [Fe(CN)6]3– anion, were designed and synthesized to tackle significant volatility and migration tendency of ferrocene‐based burning rate catalysts (BRCs) used currently in the composite solid propellants. The new compounds were characterized by UV/Vis, FT‐IR, and elementary analysis. The crystal structures of compounds 2· 5H2O and 3· CH2Cl2 · 4H2O verified the successful preparation of the desired ionic compounds. The TG tests at 70 °C for 24 h revealed that the new compounds exhibit lower volatility than catocene. The cyclic‐voltammetry results suggested that new compounds are quasi‐reversible or irreversible redox systems. TheTG/DSC analyses exhibited that the compounds are of highly thermal stability. Their catalytic effects on the thermal degradation of ammonium perchlorate (AP), 1,3,5‐trinitro‐1,3,5‐triazacyclohexane (RDX), and 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazacyclooctane (HMX) were investigated. The results showed that most of the compounds exert great effects on the thermal degradation of AP and RDX during combustion. 11 and 2 are comparable to catocene in the thermal decomposition of AP and RDX, respectively, and can therefore be used as alternatives of catocene in a composite solid propellant. Some new compounds are unexpectedly active in promoting the thermal disintegration of HMX.  相似文献   

11.
This research aimed to investigate the optimum conditions for modification of thermal decomposition properties of ammonium perchlorate (AP) particles through microencapsulation techniques. A solvent/non-solvent method has been used to perform microencapsulation of AP particles with some polymer-coating agents such as viton A and nitrocellulose (NC). Differential scanning calorimetry, thermogravimetry, and scanning electron microscopy have been exploited to investigate the thermal properties, heat of decomposition, and coating morphology of pure and coated samples. The preliminary results revealed that AP microparticle could be effectively coated with both NC and viton, but the latter significantly and unfavorably attenuated heat of decomposition of AP so NC was chosen as an appropriate coating agent for modification of thermal properties of AP. The thermal analysis of NC-coated samples, prepared at optimized coating conditions, showed that its first stage decomposition temperature increases about 12 °C with respect to uncoated sample and reaches to 305 °C. Also, the apparent activation energy (E), ΔG , ΔH , and ΔS of the decomposition processes of the pure and coated AP particles at the optimum conditions were obtained by non-isothermal methods that proposed by ASTM and Ozawa. Finally, the results of this investigation showed that microencapsulation of AP particles with fibrous NC enhance its heat of decomposition (~120 J g?1) with no obvious effect on kinetic parameters and thermal decomposition temperature.  相似文献   

12.
The inhibiting effect of ammonia vapours on the kinetics of the thermal decomposition of ammonium perchlorate(AP) in the temperature range 215–270°C has been investigated. An initial ammonia pressure of about 200 Torr is necessary for the practically full suppression of the decomposition of the orthorhombic crystals at temperatures close to the point of AP polymorphic transformation (240°C). With the cubic crystals, 0.5 Torr is the corresponding pressure required. In the case of complete inhibition of the decomposition in the presence of ammonia, AP crystals become yellowish. The activation energy of decomposition of the orthorhombic modification is 29 ± 0.6 kcal mole?1 in the absence of ammonia, and 38 ± 1.1 kcal mole?1 under ammonia vapour pressure of 6.5 Torr. A kinetic analysis of the traditional proton model of AP decomposition has been made showing that the increase of the activation energy in the presence of ammonia may be derived from this model.  相似文献   

13.
A range of various amines 2(a–i) was tested in transamination reactions using ethyl 2‐(1H‐benzimidazol‐2‐yl)‐3‐dimethylamino‐acrylate 1a. The (E)‐s‐cis/trans conformation of some representative products 4 was analyzed by 1H and 13C NMR spectra. The C‐2/C‐3 bond of the compounds 3(a–i) is strongly polarized by a push‐pull effect. In the same manner, reactions of ethyl 2‐(benzoxazol‐2‐yl)‐3‐dimethylamino‐acrylate 1c with 1,4‐diaminobenzene 2i, ethylenediamine 2i, and 1,5‐diaminomaphthalene 2k have been investigated and gave directly the corresponding symmetric bis‐acrylates 4(a–c) in good yields. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 446–454, 1999  相似文献   

14.
A series of ferrocene‐modified poly(glycidyl methacrylate) (PGMA‐Fc) compounds were synthesized and applied as burning rate catalysts in simulative solid propellant to overcome migration problems. 1H NMR and Fourier transform infrared spectroscopies and gel permeation chromatography were used to characterize the synthesized polymers. Their electrochemical behavior was evaluated using cyclic voltammetry. Their catalytic performance for the decomposition of ammonium perchlorate (AP) was investigated using thermogravimetric analysis. Anti‐migration studies were conducted in migration tubes under 50°C. The results show that PGMA‐Fc has a good catalytic effect on lowering the thermal decomposition temperature of AP. Anti‐migration studies show that PGMA‐Fc has better anti‐migration performance than ferrocene and catocene.  相似文献   

15.
In this research, ultrasound irradiation as a simple method was used to produce boron nanostructures. Reaction conditions such as boron concentration and sonication time show important roles in the size, morphology and growth process of the final products. The boron nanostructures (nanoparticles and nanorods) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, small-angle X-ray scattering and inductively coupled plasma atomic emission spectroscopy techniques. Primary evaluation of results showed that nanoparticles and nanorods of boron successfully have been prepared with 25–40 and 50–100 nm average particle size, respectively. These nanostructures (nanoparticles and nanorods) were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. Thermochemical decomposition behaviors of treated samples were characterized by thermal gravimetric analysis and differential scanning calorimetry techniques. Also, the kinetic parameters of thermal decomposition processes of pure and treated samples were obtained by nonisothermal methods proposed by Kissinger and Ozawa. However, boron nanoparticles with the smallest average particle size (25–40 nm) have the most significant catalytic effect including the decrease in decomposition temperature of AP + B nanocomposite by 100 °C, increase in the heat of decomposition from 580 to 1354 J g?1 and decrease in activation energy from 207 to 110 kJ mol?1.  相似文献   

16.
A kinetics study of the thermolysis of a series of hexasubstituted‐4,5‐dihydro‐3H‐pyrazoles (pyrazolines 1a: 3,3,4,4‐tetramethyl‐5‐phenyl‐5‐acetoxy; 1b: cis‐3,5‐diphenyl‐3,3,4‐trimethyl‐5‐acetoxy; 1c: cis‐3,5‐diphenyl‐3,4,4‐trimethyl‐5‐methoxy; 1d: 3,3,5‐triphenyl‐4,4‐dimethyl‐5‐acetoxy), which produced the corresponding hexasubstituted cyclopropanes 2a–d in quantitative yields was carried out. The first order rate constants (k1) for thermal decomposition and activation parameters were determined. The relative reactivity series was found to be 1d >> 1b ∼ 1c > 1a. The activation parameters for thermolysis were found to be: for 1a ΔH‡ = 39.8 kcal/mol, ΔS‡ = 14 eu, k150° = 6.8 × 10−5 s−1; for 1b ΔH‡ = 33.5 kcal/mol, ΔS ‡ = 0.2 eu, k150° = 1.7 × 10−4s−1; for 1c ΔH‡ = 32.7 kcal/mol, ΔS‡ = −1.8 eu, k150° = 1.2 × 10−4s−1; for 1d ΔH‡ = 30.1 kcal/mol, ΔS‡ = −1.6 eu, k150° = 8.8 × 10−3s−1. The effect of variation of C3 substituents on the activation parameters for thermolysis paralleled the trend reported for acyclic analogs. The results are consistent with the formation of a (singlet) 1,3‐diradical intermediate with subsequent closure to yield the cyclopropanes. The mechanism of diradical formation appears to involve N2‐C3 bond cleavage as the rate determining step rather than simultaneous two bond scission. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:299–302, 2000  相似文献   

17.
Rate constants for several intermediate steps in the OH‐initiated oxidation of isoprene were determined using laser‐photolysis/laser‐induced fluorescence of OH radicals at total pressures between 3 and 4 Torr at 295 K. The rate constant for decomposition of the hydroxyalkoxy radical was determined to be (3.0 ± 0.5) × 104 s?1 in this pressure range, which is in fair agreement with previous work. The presence of a prompt alkoxy decomposition pathway was also investigated and found to contribute less than 10% to the total hydroxyalkoxy radical decomposition. The rate constant for the reaction of the hydroxyperoxy radical with NO was determined to be (2.5 ± 0.5) × 10?11 cm3 molecule?1 s?1, which is moderately higher than previously reported. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 255–261, 2002  相似文献   

18.
Polypropylene‐low density polyethylene (PP‐LDPE) blends involving PP‐LDPE (90/10 wt%.) with (0.06 wt%) dialkyl peroxide (DAP) and different amounts (5, 10, 20 wt%) of calcium carbonate (CaCO3) were prepared by melt‐blending with a single‐screw extruder. The effect of addition of CaCO3 on thermal decomposition process and kinetic parameters, such as activation energy and pre‐exponential factor of PP‐LDPE blend with DAP matrix, was studied. The kinetics of the thermal degradation of composites was investigated by thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. TG curves showed that the thermal decomposition of composites occurred in one weight‐loss stage. The apparent activation energies of thermal decomposition for composites, as determined by the Tang method (TM), the Kissinger–Akahira–Sunose method (KAS), the Flynn–Wall–Ozawa method (FWO), and the Coats–Redfern (CR) method were 156.6, 156.0, 159.8, and 167.7 kJ.mol?1 for the thermal decomposition of composite with 5 wt% CaCO3, 191.5, 190.8, 193.1, and 196.8 kJ.mol?1 for the thermal decomposition of composite with 10 wt% CaCO3, and 206.3, 206.1, 207.5, and 203.8 kJ mol?1 for the thermal decomposition of composite with 20 wt% CaCO3, respectively. The most likely decomposition process for weight‐loss stages of composites with CaCO3 content 5 and 10 wt% was an An sigmoidal type. However, the most likely decomposition process for composite with CaCO3 content 20 wt% was an Rn contracted geometry shape type in terms of the CR and master plots results. It was also found that the thermal stability, activation energy, and thermal decomposition process were changed with the increase in the CaCO3 filler weight in composite structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
CuO, C60–CuO, and Al/C60–CuO nanostructures were synthesized and characterized by scanning electron microscope (SEM)/energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA) measurements were performed to study the influence of these additives on ammonium percolate (AP) thermal decomposition. From the comparison of DSC and TGA plots, the catalytic effect of CuO and C60–CuO has been clearly noticed in which the lower temperature decomposition of AP was decreased from 331 °C to 315 °C, 310 °C, and 303 °C (in the presence of CuO, C60–CuO, and Al/C60–CuO, respectively) and the HTD was dropped from 430 °C (pure AP) to 352 °C, 335 °C, and 317 °C (for the compounds AP/CuO, AP/C60–CuO, and AP/Al/C60–CuO, respectively). The kinetics of the samples were investigated by isoconversional models and compared with an iterative procedure. The results of pure AP indicated a complex decomposition process involving three decomposition steps with specific reaction mechanism. The nanocatalysts incorporated in the AP have clearly affected its decomposition process in which the reaction mechanism and the number of stages were changed.  相似文献   

20.
A theoretical kinetic study of the thermal decomposition of 1‐chlorohexane in gas phase between 600 and 1000 K was performed. Transition‐state theory and unimolecular reaction rate theory were combined with molecular information provided by quantum chemical calculations. Particularly, the B3LYP, BMK, M05–2X, and M06–2X formulations of the density functional theory (DFT) and the high‐level ab initio methods G3B3 and G4 were employed. The possible reaction channels for the thermal decomposition of 1‐chlorohexane were investigated, and the reaction takes place through the elimination of HCl with the formation of 1‐hexene. The derived high‐pressure limit rate coefficients are k (600–1000 K) = (8 ± 5) × 1013 exp[‐((56.7 ± 0.4) kcal mol−1/RT )] s−1. The pressure effect over the reaction was analyzed from the calculation of the low‐pressure limit rate coefficients and the falloff curves. In addition, the standard enthalpies of formation at 298 K of −46.9 ± 1.5 kcal mol−1 for 1‐chlorohexane and 5.8 ± 1.5 kcal mol−1 for C6H13 radical were derived from isodesmic and isogiric reactions at high levels of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号