首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive, rapid assay method has been developed and validated for the estimation of JI-101 in human plasma and urine using LC-MS/MS-ESI in the positive-ion mode. The assay procedure involves extraction of JI-101 and alfuzosin (internal standard, IS) from human plasma/urine with a solid-phase extraction process. Chromatographic resolution was achieved on two Zorbax SB-C(18) columns connected in series with a PEEK coupler using an isocratic mobile phase comprising acetonitrile-0.1% formic acid in water (70:30, v/v). The total run time was 2.0 min. The MS/MS ion transitions monitored were 466.20 → 265.10 for JI-101 and 390.40 → 156.10 for IS. The method was subjected to rigorous validation procedures to cover the following: selectivity, sensitivity, matrix effect, recovery, precision, accuracy, stability and dilution effect. In both matrices the lower limit of quantitation was 10.0 ng/mL and the linearity range extended from ~10.0 to 1508 ng/mL in plasma or urine. The intra- and inter-day precisions were in the ranges 1.57-14.5 and 6.02-12.4% in plasma and 0.97-15.7 and 8.66-10.2% in urine. This method has been successfully applied for the characterization of JI-101 pharmacokinetics in cancer patients.  相似文献   

2.
In this study, we developed a method for the determination of PF‐04620110 (2‐{(1r,4r)‐4‐[4‐(4‐amino‐5‐oxo‐7,8‐dihydropyrimido[5,4‐f][1,4]oxazepin‐6(5H)‐yl)phenyl]cyclohexyl}acetic acid), a novel diacylglycerol acyltransferase 1 (DGAT‐1) inhibitor, in rat plasma and validated it using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). Rat plasma samples were processed following a protein precipitation method by using acetonitrile and were then injected into an LC‐MS/MS system for quantification. PF‐04620110 and imipramine (internal standard) were separated using a Hypersil Gold C18 column, with a mixture of acetonitrile and 10 mm ammonium formate (90:10, v/v) as the mobile phase. The ion transitions monitored in positive‐ion mode [M + H]+ of multiple‐reaction monitoring were m/z 397.0 → 260.2 for PF‐04620110 and m/z 280.8 → 86.0 for imipramine. The detector response was specific and linear for PF‐04620110 at concentrations within the range 0.05–50 µg/mL and the signal‐to‐noise ratios for the samples were ≥10. The intra‐ and inter‐day precision and accuracy of the method matched the acceptance criteria for assay validation. PF‐04620110 was stable under various processing and/or handling conditions. PF‐04620110 concentrations in the rat plasma samples could be measured up to 24 h after intravenous or oral administration of PF‐04620110, suggesting that the assay is useful for pharmacokinetic studies in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A general practice in bioanalysis is that, whatever the biological matrix the analyte is being quantified in, the validation is performed in the same matrix as per regulatory guidelines. In this paper, we are presenting the applicability of a validated LC‐MS/MS method in rat plasma for JI‐101, to estimate the concentrations of JI‐101 in various tissues that were harvested in a rat tissue distribution study. A simple protein precipitation technique was used to extract JI‐101 and internal standard from the tissue homogenates. The recovery of JI‐101 in all the matrices was found to be >70%. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI‐101 and 180.1 → 110.1 for internal standard. The linearity range was 5.02–4017 ng/mL. The JI‐101 levels were quantifiable in the various tissue samples harvested in this study. Therefore, the use of a previously validated JI‐101 assay in plasma circumvented the tedious process of method development/validation in various tissue matrices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive, rapid assay method has been developed and validated for the estimation of omeprazole (OPZ) in human plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive-ion mode. The assay procedure involves alkalinization of plasma followed by simple liquid-liquid extraction of OPZ and lansoprazole (internal standard, IS) from human plasma with acetonitrile. Chromatographic separation was achieved with 0.01 M ammonium acetate:acetonitrile (40:60, v/v) at a flow rate of 0.25 mL/min on an Inertsil ODS 3 column with a total run time 2.5 min. The MS/MS ion transitions monitored were 346.1 --> 198.1 for OPZ and 370.1 --> 252.1 for IS. Method validation and clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.05 ng/mL and the linearity was observed from 0.05 to 10.0 ng/mL. The intra-day and inter-day precisions were in the ranges 2.09-8.56 and 5.29-8.19%, respectively. This novel method has been applied to a pharmacokinetic study of OPZ in humans.  相似文献   

5.
A highly sensitive and rapid bioanalytical method has been developed and validated for the estimation of indomethacin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of indomethacin and phenacetin (internal standard, IS) from rat plasma with acetonitrile. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 357.7 → 139.1 for indomethacin and 180.20 → 110.10 for IS. Method validation and pharmacokinetic study plasma analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.51 ng/mL and the linearity was observed from 0.51 to 25.5 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.00–10.2 and 5.88–9.80%, respectively. This novel method has been applied to an oral pharmacokinetic study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This report details a method using liquid chromatography–tandem mass spectrometry (LC‐MS/MS) that allows one to determine the concentration of an atypical anticancer drug, enzalutamide, in rat plasma. Specifically, this method involves the addition of an acetonitrile and bicalutamide (internal standard) solution to plasma samples. Following centrifugation of this mixture, an aliquot of the supernatant was directly injected into the LC‐MS/MS system. Separation was achieved using a column packed with octadecylsilica (5 µm, 2.1 × 50 mm) with 10 mM ammonium acetate in acetonitrile as the mobile phase; detection was accomplished using MS/MS by multiple‐reaction monitoring via an electrospray ionization source. This method demonstrated a linear standard curve (r = 0.997) over a concentration range of 0.001–1 µg/mL, as well as an intra‐ and inter‐assay precision of 2.7 and 5.1%, respectively, and an accuracy range from 100.8 to 105.6%. The lower limit of quantification was 1.0 ng/mL in 50 μL of rat plasma sample. We also demonstrated that this analytical method could be successfully applied to the pharmacokinetic study of enzalutamide in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and specific high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC‐ESI‐MS/MS) method was developed and validated for determination of rupestonic acid in rat plasma. Protein precipitation method was used to extract rupestonic acid and the internal standard (IS) warfarin sodium from rats plasma. The chromatographic separation was performed on an Agela Venusil XBP Phenyl column with an isocratic mobile phase consisting of methanol–0.1% formic acid in water (40:60, v/v), pumped at 0.4 mL/min. Rupestonic acid and the internal standard (IS) warfarin sodium were detected at m/z 247.2 → 203.1 and 307.1 → 161.3 in positive ion and multiple reaction monitoring mode respectively. The standard curves were linear over the concentration range of 2.5–5000 ng/mL (r2 > 0.99). The within‐day and between‐day precision values for rupestonic acid at four concentrations were 4.7–5.7 and 4.4–8.7%, respectively. The method described herein was fully validated and successfully applied to the pharmacokinetic study after an intravenous administration of rupestonic acid in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, sensitive and rapid LC‐MS/MS‐ESI method has been developed and validated for simultaneous quantification of the carisoprodol and aspirin in human plasma. Carisoprodol was detected in positive ion mode, whereas aspirin was detected in negative ion mode. Carbamazepine and furosemide were used as internal standards (IS) for quantification of carisoprodol and aspirin, respectively. The extraction procedure involves a liquid–liquid extraction method with ter‐butyl methyl ether. Chromatographic separation was achieved on a Zorbax XDB‐Phenyl (4.6 × 75 mm, 3.5 µm) column using an isocratic mobile phase (5 mm ammonium acetate:methanol, 20:80, v/v) at a flow rate of 0.8 mL/min with a total run time of 2.2 min. A detailed method validation was performed as per the FDA guidelines. The standard curves found to be linear in the range of 25.5–4900 and 15.3–3000 ng/mL for carisoprodol and aspirin, respectively. The results met the acceptance criteria. Carisoprodol and aspirin were found to be stable in various stability studies. The validated method was successfully applied to a pharmacokinetic study following co‐administration of carisoprodol (250 mg) and aspirin (75 mg) tablets by oral route to human volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, sensitive and rapid method has been developed and validated for determination of the metoclopramide (MCP) in 100 μL human plasma. The analytical procedure involves a liquid–liquid extraction method using tramadol as an internal standard (IS). Chromatographic separation was carried out on a HyPURITY ADVANCE column using a mobile phase consisting of acetonitrile and 10 mm ammonium acetate buffer in the ratio of 80:20 (v/v) at a flow rate of 0.3 mL/min. The total run time of analysis was 2.5 min and elution of MCP and IS occurred at 0.9 and 1.3 min, respectively. A linear response function was established for the range of concentrations 0.53–42.07 ng/mL (r > 0.99). The intra‐ and inter‐day precision values for MCP met the acceptance as per FDA guidelines. MCP was stable in a battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The developed assay method was successfully applied to an oral bioequivalence study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Toosendanin (TSN) is a major triterpenoid existing in Melia toosendan, which has been used as a digestive tract parasiticide and insecticide but with serious hepatotoxicity. An ultra‐performance liquid chromatography–electrospray ionization–mass spectrometry method was developed for determination of TSN in rat plasma. Plasma samples were separated on Acquity UPLCTM BEH C18 column with acetonitrile and water as flow phase by gradient elution and determined by quadrupole mass spectrometer in negative selective ion monitoring mode. Usolic acid was used as internal standard. The calibration curves were linear over 0.02–3.0 µg/mL for TSN with a lower limit of quantification (LLOQ) of 20 ng/mL in rat plasma. The extraction recoveries of TSN were within 74.3–80.7% with an accuracy of 94.5–108.9%. The intra‐ and inter‐day precision values of the assay at three quality control levels were 8.8–13.8% and <13.9% at LLOQ level, respectively. The method was successfully applied to a pharmacokinetic study of TSN in rats after a single intravenous and oral administration of 2 and 60 mg/kg. The shorter Tmax, higher Vd and Cl of TSN after oral administration indicated that TSN could be absorbed, distributed and eliminated quickly in rats in vivo. The absolute bioavailability of TSN after oral administration was 9.9%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A simple, rapid and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of angiotensin‐converting enzyme inhibitor, moexipril, in human plasma. Benazepril was used as an internal standard (IS). Analyte and IS were extracted from the human plasma by liquid–liquid extraction technique using ethyl acetate. The reconstituted samples were chromatographed on a C18 column by using a mixture of methanol and 0.1% formic acid buffer (85:15, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The calibration curve obtained was linear (r ≥ 0.99) over the concentration range of 0.2–204 ng/mL. The multiple reaction‐monitoring mode was used for quantification of ion transitions at m/z 499.4/234.2 and 425.2/351.1 for moexipril and IS, respectively. The results of the intra‐ and inter‐day precision and accuracy studies were well within the acceptable limits. A run time of 2.0 min for each sample made it possible to analyze more than 400 plasma samples per day. The proposed method was found to be applicable to clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A method for determining a novel phosphodiesterase‐4 inhibitor, 3‐[1‐(3cyclopropylmethoxy‐4‐difluoromethoxybenzyl)‐1H‐pyrazol‐3‐yl]‐benzoic acid (PDE‐423), in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry for further pharmacokinetic study for development as a novel anti‐asthmatic drug. PDE‐423 in the concentration range of 0.02–10 µg/mL was linear with a correlation coefficient of >0.99, and the mean intra‐ and inter‐assay precisions of the assay were 7.50 and 3.86%, respectively. The validated method was used successfully for a pharmacokinetic study of PDE‐423 in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Copen is a derivative obtained from the structural modification of osthole, which inhibits tumoral proliferation in many tumor cell lines. A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was established for the quantification of copen in rat plasma. After a simple sample preparation procedure by one‐step protein precipitation with methanol, copen and bicalutamide (internal standard, IS) were chromatographed on a Zorbax SB‐C18 (4.6×100 mm, 1.8 µm) column with a mobile phase consisting of methanol–5 mm ammonium formate water with 0.1% formic acid (80:20, v/v). MS detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive eletrospray ionization source. The assay was validated in the concentration range of 51.58–20630 ng/mL, with a limit of quantitation (LOQ) of 51.58 ng/mL. The intra‐ and inter‐day precisions (relative standard deviation) were ≤3.21 and ≤11.3%, respectively, with accuracy (%) in the range of 94.66–102.1%. The method was fully validated in a study of the pharmacokinetics of copen (25 mg/kg) after intragastric administration in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and specific liquid chromatography-positive electrospray ionization-tandem mass spectrometry method has been developed and validated for the determination of glimepiride (GPD) in human plasma. GPD and the internal standard (IS, glibenclamide) were extracted from a small aliquot of human plasma (200 microL) by a simple liquid-liquid extraction technique using ethyl acetate as extraction solvent. The compounds were separated on a YMC Propack, C18, 4.6x50 mm column using a mixture of ammonium acetate buffer, acetonitrile and methanol (30:60:10, v/v) as mobile phase at 0.5 mL/min on an API 4000 Sciex mass spectrometer connected to an Agilent HPLC system. Method validation and pre-clinical sample analysis was performed as per FDA guidelines and the results met the acceptance criteria. GPD and IS were detected without any interference from human plasma matrix. The method was proved to be accurate and precise at linearity range of 0.02-100.00 ng/mL with a correlation coefficient of 0.999. The method was robust with a lower limit of quantitation of 0.02 ng/mL. Intra- and inter-day accuracies for GPD were 88.60-113.50 and 96.82-103.93%, respectively. The inter-day precision was better than 12.21%. This method enabled faster and reliable determination of GPD in a pre-clinical study.  相似文献   

15.
Astragaloside III (AST III), a naturally occurring saponin compound isolated from Radix Astragali, has been demonstrated to have anti‐gastric ulcer, immunomodulatory and antitumor effects. To evaluate its pharmacokinetics in rats, a rapid, sensitive and specific high‐performance liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method has been developed and validated for the quantification of astragaloside III in rat plasma. Samples were pretreated using a simple protein precipitation with methanol–acetonitrile (50:50, v/v) and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. Astragaloside III and the internal standard (buspirone) were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range of 5.00–5000 ng/mL together with satisfactory intra‐ and inter‐day precision, accuracy and recovery. Stability testing showed that astragaloside III spiked into rat plasma was stable for 24 h at 20°C temperature, for up to 30 days at ?80°C, and during three freeze–thaw cycles. The method was successfully used to investigate the pharmacokinetic profile of AST III after oral (10 mg/kg) and intravenous (1.0 mg/kg) administration in rats. The oral absolute bioavailability of AST III was calculated to be 4.15 ± 0.67% with an elimination half‐life value of 2.13 ± 0.11 h, suggesting its poor absorption and/or strong metabolism in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A simple and sensitive analytical method using liquid chromatography–tandem mass spectrometry (LC/MS/MS) for determination of acetylsalicylic acid (aspirin, ASA) and its major metabolite, salicylic acid (SA), in animal plasma has been developed and validated. Both ASA and SA in plasma samples containing potassium fluoride were extracted using acetonitrile (protein precipitation) with 0.1% formic acid in it. 6‐Methoxysalicylic acid was used as the internal standard (IS). The compounds were separated on a reversed‐phase column. The multiple reaction monitoring mode was used with ion transitions of m/z 178.9 → 136.8, 137.0 → 93.0 and 167.0 → 123.0 for ASA, SA and IS, respectively. The lower limits of quantification for ASA and SA were 3 and 30 ng/mL, respectively. The developed method was successfully applied for the evaluation of pharmacokinetics of ASA and SA after p.o. and i.v. administration of 1 mg/kg to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Meditinib (ME) is a novel tyrosine kinase inhibitor used as an antichronic myeloid leukemia drug. A simple, sensitive and specific LC/MS/MS method was developed and validated for the analysis of ME and its metabolite demethylation meditinib (PI) in monkey plasma using naltrexone as the internal standard. Sample preparation involved protein precipitation with methanol. The analysis was carried out on an Agilent C8 column (3.5 µm, 2.1 × 50 mm). Elution was achieved with a mobile phase gradient varying the proportion of a water solution containing 0.1% formic acid (solvent A) and a 0.1% formic acid in methanol solution (solvent B) at a flow rate of 300 μL/min. The method had a linear calibration curve over the concentration range of 2–1000 ng/mL for ME and 2–1000 ng/mL for PI. The lower limits of quantification of ME and PI were 2 and 2 ng/mL, respectively. The intra‐ and inter‐day precision values were <15% and accuracy values were within ±10.0%. The mean recoveries of ME and PI from plasma were >85%. The assay has been successfully used for pharmacokinetic evaluation of ME and PI using the monkey as an animal model, and those data are reported for the first time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Styraxlignolide A is a pharmacologically active ingredient isolated from Styrax japonica Sieb. et Zucc. A rapid, selective, and sensitive liquid chromatographic method with electrospray ionization tandem mass spectrometry was developed for use in the quantification of styraxlignolide A in rat plasma. Styraxlignolide A was extracted from rat plasma using ethyl acetate at neutral pH. The analytes were separated on an Atlantis dC18 column using a mixture of methanol and ammonium formate (10 mM, pH 3.0) (70:30, v/v) and detected by tandem mass spectrometry in multiple reaction monitoring mode. The standard curve was linear (r2=0.9978) over the concentration range of 100?10000 ng/mL. The lower limit of quantification was 100 ng/mL using 50 μL of plasma sample. The coefficient of variation and relative error for intra‐ and inter‐assays at four QC levels were 1.6–8.3% and from ?12.0 to ?1.7%, respectively. The present method was applied successfully to the pharmacokinetic study of styraxlignolide A after intravenous administration of styraxlignolide A at a dose of 10 mg/kg in male Sprague–Dawley rats.  相似文献   

19.
A simple, rapid and sensitive analytical method using liquid chromatography coupled to tandem mass spectrometry (LC‐MS/MS) detection with positive ion electrospray ionization was developed for the determination of dienogest in human K2EDTA plasma using levonorgestrel d6 as an internal standard (IS). Dienogest and IS were extracted from human plasma using simple liquid–liquid extraction. Chromatographic separation was achieved on a Zorbax XDB‐Phenyl column (4.6 × 75 mm, 3.5 µm) under isocratic conditions using acetonitrile–5 mm ammonium acetate (70:30, v/v) at a flow rate of 0.60 mL/min. The protonated precursor to product ion transitions monitored for dienogest and IS were at m/z 312.30 → 135.30 and 319.00 → 251.30, respectively. The method was validated with a linearity range of 1.003–200.896 ng/mL having a total analysis time for each chromatograph of 3.0 min. The method has shown tremendous reproducibility with intra‐ and inter‐day precision (coefficient of variation) <3.97 and 6.10%, respectively, and accuracy within ±4.0% of nominal values. The validated method was applied to a pharmacokinetic study in human plasma samples generated after administration of a single oral dose of 2.0 mg dienogest tablets to healthy female volunteers and was proved to be highly reliable for the analysis of clinical samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Omarigliptin is a novel long‐acting dipeptidyl peptidase‐4 inhibitor used for the treatment of type 2 diabetes. In this work, a sensitive and selective ultra‐high pressure liquid chromatography tandem mass spectrometry method was developed and validated for the determination of omarigliptin in rat plasma. Sample preparation was performed by protein precipitation with acetonitrile. Chromatographic separation of analytes was achieved on an RRHD Eclipse Plus C18 column (2.1 × 50 mm, 1.8 μm), using gradient mobile phase (0.1% formic acid–acetonitrile) at a flow rate of 0.4 mL/min. Detection was performed in multiple reaction monitoring mode, with target fragment ions m/z 399.1 → 152.9 for omarigliptin and m/z 237.1 → 194 for the internal standard. The total run time was 4 min. Retention time of omarigliptin and internal standard was 1.25 and 2.12 min, respectively. Relative standard deviation (%) of the intra‐ and inter‐day precision was below 10.0%, and accuracy was between 97.9% and 105.3%. Calibration curve was established over the range 2–5000 ng/mL with good linearity. The lower limit of quantification and limit of detection of omarigliptin were 2 and 0.25 ng/mL, respectively. Mean recoveries were in the range 87.3–95.1% for omarigliptin. No matrix effect was observed in this method. This novel method has been successfully applied to a pharmacokinetic study of omarigliptin in rats. The absolute bioavailability of omarigliptin was identified as high as 87.31%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号