首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of two independent calorimetric investigations of the pyridine- iodine complex are reported. “Best” values are reported as Km = 128 1/mol and ΔH° = -8.4 kcal mol?1 for the formation of the complex in cyclohexane at 25°C, and Km = 104 and ΔH° = -7.9 kcal mol?1 in carbon tetrachloride. Evidence is presented to support the contention that association constants for weak complexes determined by calorimetric methods can be as reliable as those determined by spectrometric methods, and that values of ΔH° determined by the calorimetric method are much more reliable than those derived from the temperature dependence of equilibrium constants.  相似文献   

2.
The three-component systems RbClMnCl2H2O, 2RbCl · CoCl2 · 2H2O2RbCl · CuCl2 · 2H2OH2O, 2RbCl · CoCl2 · 2H2O2RbCl · MnCl2 · 2H2OH2O have been studied at 25°C. In the 2RbCl · CoCl2 · 2H2O2RbCl · CuCl2 · 2H2OH2O system, a discontinuous series of mixed crystals is formed and in the 2RbCl · CoCl2 · 2H2O2RbCl · MnCl2 · 2H2OH2O system, a continuous series is present.The unit cell parameters of the 2RbCl · CoCl2 · 2H2O double salt were determined: a = 5.586(2) Å, b = 6.469(3) Å, c = 6.988(2) Å, α = 65.31(3)°, β = 87.69(3)°, γ = 84.65(4)°, volume 228.4 Å3, Z = 1.The results obtained and discussed in conjunction with the crystal structure data suggest that for 2MICl · MIICl2 · 2H2O type salts the triclinic structure is stable only when the large rubidium and cesium ions participate in combinations with non-Jahn-Teller metal(II) ions. In the cases of Jahn-Teller metal(II) ions or with potassium or ammonium ions a tetragonal structure is always stable.  相似文献   

3.
The structure and relative stability of 1,4-dioxane-water, (Diox)n·(H2O )m (n = 1, 2, m = 1–6), molecular complexes have been calculated by semiempirical MNDO/PM3 method. A considerable variety of (Diox)n·(H2O )m isomeric structures was stated. The mean energy of ODiox…HW-OW hydrogen bond in (Diox)n·(H2O)m complexes formed by 1,4-dioxane molecules in the chair conformation amounts to ?2.293 ± 0.210 kcal/mol with the average bond length 2.797 0.015 Å.  相似文献   

4.
The kinetics and mechanisms of the unimolecular decompositions of phenyl methyl sulfide (PhSCH3) and benzyl methyl sulfide (PhCH2SCH3) have been studied at very low pressures (VLPP). Both reactions essentially proceed by simple carbon-sulfur bond fission into the stabilized phenylthio (PhS·) and benzyl (PhCH2·) radicals, respectively. The bond dissociation energies BDE(PhS-CH3) = 67.5 ± 2.0 kcal/mol and BDE(PhCH2-SCH3) = 59.4 ± 2 kcal/mol, and the enthalpies of formation of the phenylthio and methylthio radicals ΔH° ,298K(PhS·, g) = 56.8 ± 2.0 kcal/mol and ΔH°f, 298K(CH3S·, g) = 34.2 ± 2.0 kcal/mol have been derived from the kinetic data, and the results are compared with earlier work on the same systems. The present values reveal that the stabilization energy of the phenylthio radical (9.6 kcal/mol) is considerably smaller than that observed for the related benzyl (13.2 kcal/mol) and phenoxy (17.5 kcal/mol) radicals.  相似文献   

5.
Kinetics of the Aquation [Co(NH3)5DMSO](ClO4)3 · 2 H2O The aquation rate constants of (dimethylsulfoxide)pentaamminecobalt(III)perchlorate in aqueous perchloric acid media has been determined spectrophotometrically under various conditions of acidity and complex concentrations at 25–50°C. The reaction proceeds by an first-order rate law presumably with D-mechanism, and is independently of the acidity. The values for the activation enthalpy and entropy has been calculated: ΔH≠ = 24,7 kcal mol?1; ΔS≠ = 4,5 cal K?1 mol?1.  相似文献   

6.
Calorimetric measurements of the enthalpy of reaction of WO3(c) with excess OH?(aq) have been made at 85°C. Similar measurements have been made with MoO3(c) at both 85 and 25°C, to permit estimation of ΔH°=?13.4 kcal mol?1 for the reaction WO3(c)+2OH?(aq)=WO2?4(aq)+H2O(liq) at 25°C. Combination of this ΔH° with ΔH°f for WO3(c) leads to ΔH°f=?256.5 kcal mol?1 for WO2?4(aq). We also obtain ΔH°f=?269.5 kcal mol?1 for H2WO4(c). Both of these values are discussed in relation to several earlier investigations.  相似文献   

7.
Five new volatile lithium complexes were synthesized by reactions of lithium hydroxide monohydrate (LiOH · H2O) with β-diketones, namely, dipivaloylmethane (HDpm), hexafluoroacetylacetone (HHfa), trifluoroacetylacetone (HTfa), benzoyltrifluoroacetone (HBtfa), pivaloyltrifluoroacetone (HPta), and valeryltrifluoroacetone (HVta). The complexes obtained were studied by IR and electronic absorption spectroscopy, mass spectrometry, and comprehensive thermal analysis. The temperature dependence of the vapor pressure, which was obtained by the Knudsen effusion method with mass-spectrometric analysis of the vapor phase composition in the 400–450 K range, was used to calculate the standard thermodynamic parameters of the Li(Dpm) sublimation: ΔH°subl = 45.7 ± 1.7 kcal mol?1 and ΔS°subl = 77.9 ± 4.0 cal mol?1 K?1.  相似文献   

8.
Solutions (2 ml) of small linear and cyclic peptides ( 4–11 ), of a peptolide containing nine amino acids and a lactate moiety ( 12 ), of the cyclic undecapeptide cyclosporin A (CS, 1 ), and of the macrolides ascomycin, fujimycin, and rapamycin ( 13–15 ) in THF were added to excess LiCl, LiBr, or LiClO4 (up to 3000 equiv. in 40 ml THF) in a calorimeter (calorimetric titration). The enthalpies of interaction measured are in the range of ΔH = ?8 to ?37 kcal/mol. A similar experiment was carried out with one of the binding proteins of cyclosporin, the human cyclophilin A, to give the thermodynamic parameters for the complexation ΔH = ?16, Δ = ?10 kcal/mol, and Δ = ?20 cal/mol·deg. at 25° which corresponds to an equilibrium constant K = 2·107 l/mol, in good agreement with the result of independent measurements using different methods. NMR Measurements of the macrolides in (D8)THF containing LiCl show strong down-field shifts of signals of the H-atoms next to C?O and C–OH groups in these molecules.  相似文献   

9.
Benzenephosphonic acid quantitatively precipitates thorium as Th(C6H5PO3)2·3H2O at pH values as low as 0.5. The compound may be dried at 140° to 180° C and weighed, as a gravimetric means of determining thorium. On ignition, Th (C2H5PO3)2 3 H2O undergoes decomposition at 240° to 300° C to form Th(C6H5PO3)2·2H2O, at 450° to 650° C to form Th(HPO4)2·2H2O and finally at 800° to 1000° C to form Th(HPO4)2. The latter compound is stable to 1200° C.Potentiometrically (pK1' = 0.91, pK2' = 6.41) and spectrophotometrically (pK1' = 0.96, pK2' = 6.51) determined pK' values are reported. Absorption spectra of C6H5PO3H2, C6H5PO3H- and C6H5PO3-2 are reported. The solubility of Th (C6H5PO3)2·3H2O was studied as a function of pH and the average value of the solubility product (Ksp = 4s3) was found to be 3.24·10-31.  相似文献   

10.
Hydrates of 3-phenylpropenal thiosemicarbazone (HL·H2O) and semicarbazone (HL′·H2O) react in methanol with cobalt, nickel, copper, and zinc chlorides, nitrates, and acetates to form coordination compounds MX2·2HL·nSolv [M = Co, Ni, Cu, Zn; X = Cl, NO3; HL = C6H5CH=CH-CH=N-NHC(O)NH2; n = 0–3; Solv = H2O, CH3OH], CuX2·HL·nH2O [M = Ni, Cu; n = 0, 1], ML2·nH2O and ML′·nH2O [M = Co, Ni, Zn; HL′ = C6H5CH=CH-CH=N-NHC(O)NH2; n = 0–3]. In the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, and 4-CH3C5H4N) these reactions yield the complexes Cu(A)LCl·CH3OH and M(A)LX·nH2O [M = Cu, Ni; X = Cl, NO3; n = 0–2]. The copper complexes with the amine ligands are of polynuclear structure, and other complexes are monomeric. Carbazones (HL and HL′) are included in the complexes as bidentate N,S-and N,O-ligands. The thermolysis of the complexes involves the stages of removing solvent crystallization molecules (70–90°C), deaquation (150–170°C), and full thermal decomposition (500–580°C).  相似文献   

11.
The complexation reactions of iron(III) with 2-pyridine carboxylic acia (picolinic acid) and 2,6-pyridine dicarboxylic acid (dipicolinic acid) in aqueous solutions have been studied by spectrophotometric and stopped flow techniques. Equilibrium constants were determined for the 1 : 1 complexes at temperatures between 25 and 80°C. The values obtained are: Picolinic Acid (HL): Fe3++ H2L+? FeHL3++H+(K1 = 2.8,ΔH = 2 kcal mole?1 at 25°C, μ = 2.67 M) Dipicolinic Acid (H2D): Fe3++H2D? FeD++2H+(K1K1A= 227 M, ΔH = 3.4 kcal mole?1 at 25°C,μ = 1.0 M). The rate constants for the formation of these complexes are also given. The results are used to evaluate the effects of these two acids upon the rate of dissolution of iron(III) from its oxides.  相似文献   

12.
Temperature dependent molar absorptivities are reported for acetone, 2-butanone, 2-pentanone, 3-pentanone, acetaldehyde, propionaldehyde, and n-butyraldehyde in aqueous solution. Molar absorptivities are given at eight temperatures in the range 6.5–69.5°C for wavelengths greater than 200 nm, a spectral resolution of 2.0 nm, and a spacing of 2.5 nm. For both ketones and aldehydes a shift to shorter wavelengths of approximately 10 nm is observed in the aqueous phase absorption spectrum relative to that found in the gas phase. For the ketones, there is an increase in the total intensity of the spectrum of approximately 5% over the range of temperatures studied. For the aldehydes a much larger change in the intensity of the absorption spectrum is observed, due to the temperature dependence of the hydration reaction RCHO + H2O ⇄ RCH(OH)2; Khyd = [RCH(OH)2/[RCHO]. The change in the spectral intensity with temperature is used to determine thermodynamic parameters for the hydration reaction, giving the following results (at 25°C): acetaldehyde, Khyd = 1.13 ± 0.06, ΔH = −19.7±0.6kJ/mol, ΔS= −65.0±2.5J/mol-K; propionaldehyde, Khyd=1.02±0.06, ΔH=-20.8±0.8kJ/mol, ΔS=-69.6±3.1J/mol-K; n-butyraldehyde, Khyd=0.50±0.05, ΔH=-27.0±2.2kJ/mol, ΔS= −96.5± 8.2 J/mol-K. The implications of these results for aqueous phase atmospheric chemistry are discussed.  相似文献   

13.
This paper estimates some thermochemical (in kcal mol–1) and detonation parameters for the ionic liquid, [emim][ClO4] and its associated solid in view of its investigation as an energetic material. The thermochemical values estimated, employing CBS‐4M computational methodology and volume‐based thermodynamics (VBT) include: lattice energy, UPOT([emim][ClO4]) ≈? 123 ± 16 kcal · mol–1; enthalpy of formation of the gaseous cation, ΔfH°([emim]+, g) = 144.2 kcal · mol–1 and anion, ΔfH°([ClO4], g) = –66.1 kcal · mol–1; the enthalpy of formation of the solid salt, ΔfH°([emim][ClO4],s) ≈? –55 ± 16 kcal · mol–1 and for the associated ionic liquid, ΔfHo([emim][ClO4],l) = –52 ± 16 kcal · mol–1 as well as the corresponding Gibbs energy terms: ΔfG°([emim][ClO4],s) ≈? +29 ± 16 kcal · mol–1 and ΔfGo([emim][ClO4],l) = +24 ± 16 kcal · mol–1 and the associated standard absolute entropies, of the solid [emim][ClO4], S°298([emim][ClO4],s) = 83 ± 4 cal · K–1 · mol–1. The following combustion and detonation parameters are assigned to [emim][ClO4] in its (ionic) liquid form: specific impulse (Isp) = 228 s (monopropellant), detonation velocity (VoD) = 5466 m · s–1, detonation pressure (pC–J) = 99 kbar, explosion temperature (Tex) = 2842 K.  相似文献   

14.
Thermogravimetry was used to obtain data on the isothermal rate of dehydration and hydration of the reaction Na2SO4·10H2O→Na2SO4+10H2O in the temperature range 10 to 25°C. The thermodynamic functions, ΔH, ΔG and ΔS were calculated and compared with data in the literature. The dissociation pressures of Na2SO4·10H2O at temperatures in the range 0 to 25°C were measured in a volumetric dissociation apparatus. The results obtained were compared with those using thermogravimetry and the accuracy of the two techniques was assessed.  相似文献   

15.
The thermal unimolecular decomposition of 2-phenylethylamine (PhCH2CH2NH2) into benzyl and aminomethyl radicals has been studied under very-low-pressure conditions, and the enthalpy of formation of the aminomethyl radicals, ΔH°f, 298K (H2NCH2·) = 37.0 ± 2.0 kcal/mol, has been derived from the kinetic data. This result leads to a value for the C—H bond dissociation energy in methylamine, BDE(H2NCH2—H) = 94.6 ± 2.0 kcal/mol, which is about 3.4 kcal/mol lower than in C2H6 (98 kcal/mol), indicating a sizable stabilization in α-aminoalkyl radicals.  相似文献   

16.
A new chelate (η5-C5H5)2Ti(SB)2, whereSB=O, N donor Schiff base salicylidene-4-methylaniline, was synthesized. The course of thermal degradation of the chelate was studied by thermogravimetric (TG) and differential thermal analysis (DTA) under dynamic conditions of temperature. The order of the thermal decomposition reaction and energy of activation was calculated from TG curve while from DTA curve the change in enthalpy was calculated. Evaluation of the kinetic parameters was performed by Coats-Redfern as well as Piloyan-Novikova methods which gaven=1, ΔH=1.114 kJ·mol?1, ΔE=27.01 kJ·mol?1, ΔS=?340.12 kJ·mol?1·K?1 andn=1, ΔH=1.114 kJ·mol?1, ΔE=20.01 kJ·mol?1, ΔS=?342.60 kJ·mol?1·K?1, respectively. The chelate was also characterized on the basis of different spectral studies viz. conductance, molecular weight, IR, UV-visible and1H NMR, which enabled to propose an octahedral structure to the chelate.  相似文献   

17.
The direct measurements of differential enthalpies of solution Δsol H 2, of LiCl·H2O, NaCl, KCl, MgCl2·6H2O, CaCl2·6H2O and BaCl2·2H2O, as the function of molality,m, in the region of concentrated solutions were performed. On this basis the enthalpies of crystallization, Δcryst H m, were calculated and compared to the appropriate literature data.  相似文献   

18.
Based on the requirement for the comprehensive exploitation and utilization of the salt lake resources magnesium chloride and potassium chloride, a new technology to produce KCl and ammonium carnallite (NH4Cl·MgCl2·6H2O) by using NH4Cl as salting-out agent to separate carnallite is proposed. The solubilities of quaternary system KCl–MgCl2–NH4Cl–H2O were measured by the isothermal method at t = 60.00 °C and the corresponding phase diagram was plotted and analyzed. The analysis of this phase diagram shows that there are seven saturation points and eight regions of crystallization. These eight regions of crystallization represent salts corresponding to KCl, NH4Cl, MgCl2·6H2O, (K1?n (NH4) n )Cl, ((NH4) n K1?n )Cl, (K1?n (NH4) n )Cl·MgCl2·6H2O, KCl·MgCl2·6H2O and NH4Cl·MgCl2·6H2O. According to the phase diagram analysis and calculations, ammonium carnallite (NH4Cl·MgCl2·6H2O) and KCl can be obtained using carnallite as raw materials and ammonium chloride as salting-out agent at t = 60.00 °C. The new technology shows the advantages of being easy to operate and having low energy consumption. The research on this quaternary phase diagram is the foundation for reasonable development of carnallite resources and comprehensive utilization of the salt lake brines.  相似文献   

19.
Equilibria among the cyclic compounds (Me2Si)n where n = 5, 6 and 7 have been studied between 30–58°C. Thermodynamic values for the redistribution reactions between pairs of compounds are, for n = 5 → 6, ΔH = ?18 kcal/mole, ΔS = ?20 cal/deg. mole; for n = 7 → 6, ΔH ?3, ΔS +33; for n = 7 → 5, ΔH +18, ΔS + 51. The enthalpies indicate that the stabilities of the rings increase in the order (Me2Si)5 < (Me2Si)7 < (Me2Si)6. The differences are smaller than corresponding differences among the cycloalkanes, probably because the silicon compounds are less affected by steric repulsions and angle strain.  相似文献   

20.
3-Phenylpropenal benzoylhydrazone (HL) reacts with cobalt, nickel, and copper chlorides, nitrates, and acetates to give coordination compounds MX2 · nH2O [M = Co, Ni, Cu; X = Cl, NO3, HL = C6H5CH=CHCH=NNHC(O)C6H5; n = 0, 2] and ML2 · nH2O (M = Co, Ni, Cu; n = 1–3). Complexes MALCI (M = Co, Ni, Cu) were obtained by these reactions in the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, 4-CH3C5H4N). All the compounds have a monomeric structure. Azomethine (HL) in them behaves as a bidentate N,O-ligand. Thermolysis of the complexes involves the stages of dehydration (70–90°C), deaquation (145–155°C) or deamination (145–185°C), and complete thermal decomposition (330–490°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号