首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of unsteady wall shear stress on boundary layer noise and wall pressure fluctuations is discussed. It is argued that in the acoustic analogy theory of boundary layer noise the surface shear stress “dipole” characterizes acoustic propagation and not generation. Analytical results are presented in support of this view which, in addition, indicate that the effect of the surface dipole is to dininish rather than enhance boundary layer radiation at low Mach numbers.  相似文献   

2.
Resolving fluid transport at engine surfaces is required to predict transient heat loss, which is becoming increasingly important for the development of high-efficiency internal combustion engines (ICE). The limited number of available investigations have focused on non-reacting flows near engine surfaces, while this work focuses on the near-wall flow-field dynamics in response to a propagating flame front. Flow-field and flame distributions were measured simultaneously at kHz repetition rates using particle tracking velocimetry (PTV) and planar laser induced fluorescence (PLIF) of sulfur dioxide (SO2). Measurements were performed near the piston surface of an optically accessible engine operating at 800?rpm with homogeneous, stoichiometric isooctane-air mixtures. High-speed measurements reveal a strong interdependency between near-wall flow and flame development which also influences subsequent combustion. A conditional analysis is performed to analyze flame/flow dynamics at the piston surface for cycles with ‘weak’ and ‘strong’ flow velocities parallel to the surface. Faster flame propagation associated with higher velocities before ignition demonstrates a stronger flow acceleration ahead of the flame. Flow acceleration associated with an advancing flame front is a transient feature that strongly influences boundary layer development. The distance from the wall to 75% maximum velocity (δ75) is analyzed to compare boundary layer development between fired and motored datasets. Decreases in δ75 are strongly related to flow acceleration produced by an approaching flame front. Measurements reveal strong deviations of the boundary layer flow between fired and motored datasets, emphasizing the need to consider transient flow behavior when modeling boundary layer physics for reacting flows.  相似文献   

3.
The energy spectrum of a nonrelativistic quantum particle in the confinement state in a closed spatial volume at general boundary confinement conditions (the Robin conditions) is investigated. It is shown that the properties of such a state are substantially more nontrivial compared with particle confinement using the potential barrier. It is also shown for a hydrogen-like atom arranged in a spherical cavity with radius R that if the surface layer with nonzero depth d plays the role of the boundary of the confinement region, all the energy levels of a discrete spectrum of the atom have a finite limit at R → 0, while the R-dependence of the lower layer at physically substantial parameters of the surface layer contains a deep well-pronounced minimum, in which the binding energy is considerably higher than for the lower 1s level of a free atom.  相似文献   

4.
The reflection as well as transmission of ballistic electrons at a potential barrier is studied as a function of the angle of incidence. The samples are based on high mobility two dimensional electron gases in AlGaAs/GaAs -heterostructures using split gate point contacts for collimated emission as well as detection of ballistic electron beams. The variable electrostatic barrier is formed as a depletion space charge layer by biasing a 45° tilted gate strip. An external magnetic field is used to adjust the angle of incidence. The experimental results are compared to a model for the transmission and reflection coefficients at a potential boundary.  相似文献   

5.
Investigations of the magnetic state of a surface layer ~200 nm thick and of the bulk in macroscopic ferrite crystals of the type Ba-M (BaFe12O19) are performed in the phase transition region around the Curie temperature (T c). The method of simultaneous gamma, x-ray, and electron Mössbauer spectroscopy, which made it possible to compare directly the phase states of the surface and bulk of the sample, is used for the measurements. It is observed experimentally that in BaFe12O19 the transition of a surface layer ~200 nm thick to the paramagnetic state occurs at temperatures below T c. It is established that the transition temperature T c(L) of a thin layer localized at depth L from the surface of the crystal increases with distance from the surface and reaches the value T c at the lower boundary of the “critical” surface layer. Therefore, near T c a nonuniform state in which the crystal is magnetically ordered in the bulk but disordered at the surface is observed. A phase diagram of the states of the surface and of the bulk of macroscopic magnets near the Curie (or Néel) point is proposed on the basis of all the experimental results obtained in the present work as well as previously published results.  相似文献   

6.
A mathematical model is presented for determining the oblique incidence of an acoustic wave at both a boundary and layer of a gas–drop mixture or a bubbly liquid of finite thickness. The basic wave reflection and transmission patterns are established for the incidence of a low-frequency acoustic wave at an interface between a pure gas and a gas–drop mixture, as well as between a pure and bubbly liquid. A range of varying volume fractions for a drop is determined, for which the zero value of the reflection coefficient is possible for low frequencies at oblique incidence. It is shown that the reflection coefficient will never be zero at angles of incidence above 24.5° from a gas–drop mixture at a pure gas boundary; however, when a wave is incident from a pure gas at a gas–drop mixture boundary, a zero reflection coefficient is possible for nonzero angles of incidence and the volume fraction of inclusions. The results of calculating reflection of an acoustic wave from a two-phase layer of a medium with a finite thickness are presented. It is established that the minimum reflection coefficient is possible depending on the perturbation frequency for a certain range of angles of incidence for the boundary or the layer of the gas–drop mixture, which is governed mainly by difference in densities between it and the pure gas.  相似文献   

7.
Anuar Ishak  Ioan Pop 《Physics letters. A》2008,372(14):2355-2358
The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as xm, where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation.  相似文献   

8.
In the present article, we investigate the possibility of using simple physical models for predicting properties of incompressible turbulent boundary layer on permeable wall at various values of air-microblowing mass flow rate. It is shown that the velocity scaling U ??*/?? 99 can be successfully used to approximate the distribution of mean velocity in the outer region of the boundary layer. The use of this scaling makes the velocity profiles invariant with respect to Reynolds-number variation; this circumstance largely facilitates the analysis of experimental data, making it independent of upstream flow conditions. The distribution of mean velocity in the logarithmic flow region of the boundary layer over permeable surface can be described with a modified law of the wall involving a constant C 0 equal to the same constant for canonical boundary layer, and a quantity K being a weak function of blowing ratio.  相似文献   

9.
The temperature dependence of the parameters of the hyperfine interaction in the surface layers and in the bulk of macroscopic crystals of hexagonal ferrites of the type Sr-M (SrFe12O19) is investigated by the method of simultaneous gamma-, x-ray, and electron Mössbauer spectroscopy. It is shown experimentally that the transition of an ≈ 200 nm thick surface layer of macroscopic ferromagnets to the paramagnetic state occurs at a temperature 3° below the Curie point (T c) for the bulk of the crystal. It was established that the transition temperatureT c(L) of a thin layer localized at a depthL from the surface of the crystal increases away from the surface and reaches the valueT c at the lower (away from the surface) boundary of the so-called “critical” surface layer. A nonuniform state in which the bulk region of the crystal is magnetically ordered while the surface region is disordered is observed nearT N.  相似文献   

10.
The effect of mass-transport boundary layers, that are often associated with surface reactions proceeding at high rates, on ellipsometer measurements of the underlying surface has been investigated for typical transport conditions in liquids. The effect can be of significant extent and depends primarily on concentration difference across the boundary layer, angle of incidence and optical constants of the surface. A simplified method for predicting boundary-layer effects based on light refraction is introduced. Computations are in good agreement with experiments.  相似文献   

11.
Boundary layers are omnipresent in fundamental kinetic experimental facilities and practical combustion engines, which can cause ambiguity and misleading results in kinetic target acquisition and even abnormal engine combustion. In this paper, using n-heptane as a representative large hydrocarbon fuel exhibiting pronounced low-temperature chemistry (LTC), two-dimensional numerical simulation is conducted to resolve the transient autoignition phenomena affected by a boundary layer. We focus on the ignition characteristics and the subsequent combustion mode evolution of a hot combustible mixture flowing over a colder flat plate in an isobaric environment. For cases with autoignition occurring within the boundary layer, similarity is observed in the first-stage ignition as manifested by a constant temperature at all locations. The first-stage ignition is found to be rarely affected by heat and radical loss within the boundary layer. While for the main ignition event, an obvious dependence of ignition process on boundary layer thickness is identified, where the thermal-chemical process exhibits similarity at locations with similar boundary layer thickness, and the main ignition tends to first occur within the boundary layer at the domain end and generates a C-shape reaction front. It is found that sequential spontaneous autoignition is the dominant subsequent combustion mode at high-pressure conditions. At low to intermediate pressures, auto-ignition assisted flame propagation is nevertheless the dominant mode for combustion evolution. This research identifies novel features of autoignition and the subsequent combustion mode evolution affected by a cold, fully developed boundary layer, and provides useful guidance to the interpretation of abnormal combustion and combustion mode evolution in boundary layer flows.  相似文献   

12.
A study is reported of the temperature dependences of the hyperfine (HF) interaction parameters in a ~200-nm thick surface layer and in the bulk of macroscopic hexagonal ferrite crystals of the Sr-M type (SrFe12O19 and SrFe10.2Al1.8O19). The method used for the measurements is Mössbauer spectroscopy with simultaneous detection of gamma quanta, characteristic x-ray emission, and electrons, which permits direct comparison of the HF parameters in the bulk and the near-surface layers of a sample. As follows from the experimentally determined temperature dependences of the effective magnetic fields, the fields at the nuclei of the iron ions located in a ~200-nm thick near-surface layer decrease with increasing temperature faster than those of the ions in the bulk. The transition to paramagnetic state in a ~200-nm thick surface layer was found to occur 3° below the bulk Curie temperature. This offers the first experimental evidence for the transition to paramagnetic state in a surface layer of macroscopic ferromagnets to take place below the Curie temperature T c for the bulk of the crystal. It has been established that the transition temperature T c (L) of a thin layer at a depth L from the surface of a crystal increases as one moves away from the surface to reach T c at the inner boundary of the surface layer called critical. In the vicinity of T c one observes a nonuniform state, with the crystal being magnetically ordered in the bulk but disordered on the surface. The experimental data obtained were used to construct a phase diagram of surface and bulk states for macroscopic magnets near the Curie (or Néel) temperature.  相似文献   

13.
Development of an incompressible turbulent boundary layer with air blowing through a finely perforated flat surface, consisting of a permeable region and impermeable region behind, was studied experimentally. The mass flow rate of injected air Q per an area unit was varied from 0 to 0.2 (kg/s)/m2. Detailed data about the internal structure of the boundary layer in the flow region, characterized by an abrupt change in the flow conditions at the boundary of permeable and impermeable regions, were obtained. A consistent decrease in the local values of skin friction coefficient along a permeable sample and with an increase in the values of Q, reaching 90% at maximal Q, is shown. The role of the flow region behind the zone with an abrupt change in the boundary conditions, essential from the viewpoint of skin friction reduction, is revealed.  相似文献   

14.
F. Gou 《Applied Surface Science》2007,253(12):5467-5472
In this study, SiF interaction with amorphous Si surface at normal incidence was investigated using molecular dynamics simulation at 300 and 600 K. The incident energies of 50, 100 and 200 eV were used. The results show that the deposition rate is not sensitive to the incident energy, while with increasing the surface temperature, the deposition rate decreases. The etch yield is sensitive to the incident energy and the surface temperature. The etch yield increases with increasing incident energy and temperature. After bombarding, a SixFy interfacial layer is formed. The interfacial layer thickness increases with increasing incident energy mainly through enhanced penetration of the silicon lattice. In the interfacial layer, for SiFx (x = 1-3) species, SiF is dominant and only little SiF3 is present. At the outmost and innermost of the interfacial layer, SiF species is dominant. Most of SiF3 species is concentrated above the initial surface.  相似文献   

15.
This paper addresses a hydrogen outgassing mechanism in titanium materials with extremely low outgassing property by investigating the distribution of hydrogen atoms concentration in depth below the surface, and the activation energy for desorption of dissolved hydrogen atoms into the boundary region between the surface oxide layer and the bulk titanium and that of adsorbed hydrogen atoms on the surface. The distribution of hydrogen atoms concentration in depth below the surface was analyzed by a time-of-flight secondary ion mass spectrometry (TOF-SIMS). The activation energy for desorption of dissolved hydrogen atoms was estimated by the thermal desorption spectroscopy (TDS) measurement with various heating rates. The activation energy for desorption of adsorbed hydrogen atoms was estimated by the temperature dependence of the outgassing rate in titanium material. In the titanium material, hydrogen atoms show maximum concentration at the boundary between the surface oxide layer and the bulk titanium. Concentration of hydrogen atoms decreases rapidly at the surface oxide layer, while it decreases slowly in the deep region below the surface layer-bulk boundary by the vacuum evacuation without/with the baking process. The activation energy for desorption of 1.02 eV of dissolved hydrogen atoms into the surface layer-bulk boundary is about three times as large as that of 0.38 eV of the adsorbed hydrogen atoms on the surface. These results suggest that the hydrogen outgassing mechanism in the titanium material is composed the follows processes, i.e. the slow hydrogen atoms diffusion at the surface layer-bulk boundary, quick hydrogen atoms diffusion at the surface oxide layer and rapid desorption of adsorbed hydrogen atoms on the surface. This outgassing mechanism gives very low hydrogen concentration near the surface, which results in the extremely low outgassing rate in titanium materials.  相似文献   

16.
The hydromagnetic convective boundary layer flow past a stretching porous wall embedded in a porous medium with heat and mass transfer in the presence of a heat source and under the influence of a uniform magnetic field is studied. Exact solutions of the basic equations of motion, heat and mass transfer are obtained after reducing them to nonlinear ordinary differential equations. The reduced equations of heat and mass transfer are solved using a confluent hypergeometric function. The effects of the flow parameters such as a suction parameter (N), magnetic parameter (M), permeability parameter (K p ), wall temperature parameter (r), wall concentration parameter (n), and heat source/sink parameter (Q) on the dynamics are discussed. It is observed that the suction parameter appears in the boundary condition ensuring the variable suction at the surface. Transverse component of the velocity increases only when magnetic field strength exceeds certain value, but the thermal boundary layer thickness and concentration distribution increase for all values. Results presented in this paper are in good agreement with the work of the previous author and also in conformity with the established theory.  相似文献   

17.
A numerical study of the boundary layer flow past unsteady stretching surface in nanofluid under the effects of suction and viscous dissipation is investigated. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented, which depends on the unsteadiness parameter A, Eckert number Ec, ζ suction or injection parameter, Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophoresis number Nt. The governing partial differential equations were converted to nonlinear ordinary differential equations by using a suitable similarity transformation, which are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration scheme. The accuracy of the numerical method is tested by performing various comparisons with the previously published work, and the results are found to be in excellent agreement. Numerical results are presented both in tabular and graphical forms illustrating the effects of these parameters on thermal and nanoparticle volume fraction boundary layers. The thermal boundary layer thickens with a rise in the local temperature as the Brownianmotion, thermophoresis, and convective heating each intensify.  相似文献   

18.
在无扰动、随机式扰动以及正弦式扰动下,通过对竖直恒温面处状态Ra为1.328×10^9、Pr为6.24的自然对流进行模拟,探索了热边界层的不稳定性和共振强化自然对流换热。结果表明:(1)竖直自然对流边界层上游位置的随机式扰动对热边界层的影响主要体现在稳定阶段;(2)该状态下的竖直自然对流边界层的特征频率为15 067,且相比于无扰动状态,频率为15 067的正弦式扰动能在竖直恒温面处提高5.15%的换热量;(3)在竖直自然对流边界层上游位置加入特征频率的正弦式扰动,竖直恒温面处的局部努塞尔数Nu均出现明显波动,且波动随着边界层高度的增加而增大。  相似文献   

19.
A new two-layer model has been proposed to study microscale heat transfer associated with a developing flow boundary layer. As an example, a cold, microscale film of liquid impinging on an isothermal hot, horizontal surface has been investigated. The boundary layer is divided into two regions: a micro layer at microscale away from the surface and a macro layer at macroscale away from the surface. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for microscale film flow. The approximate solution may provide a valuable basis for assessing microscale flow and heat transfer in more complex settings.  相似文献   

20.
The internal source analytical technique is extended to predict the radiative heat transfer for a layer having an arbitrary temperature distribution. By combining a number of internal sources distributed at various optical depths in the layer and weighting them appropriately, a nonisothermal layer is modeled. Heat flux and intensity distributions within layers having a single internal source are presented. The distributions are found to present trends unique to the internal source problem. Isothermal layers are modeled and compare very well with published results. Increased accuracy is attained for all cases and particularly for larger optical depths and smaller albedos by increasing the number of internal sources. The technique is applied to a nonisothermal layer having a temperature distribution similar to that for a hot medium with a cold boundary region. The effect of the boundary region on the normalized heat flux leaving the layer is seen to collapse to a single line for small layer optical thicknesses and large albedos, the slope of which is governed by the temperature ratio Tmax/Tmin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号