首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quenching constants for the UO2+2 ion fluorescence by the Eu3+ ion in H2O, D2O, potassium formate and acetic acid media were determined by measuring the decrease in intensity of the 5050 Å fluorescence peak and the lifetime of the UO2+2 ion fluorescence. The energy transferred to the Eu3+ ion was found to be a small fraction of the energy lost by the UO2+2 ion by the non-radiative processes. The variations of the quenching constants of the UO2+2 ion and the fluorescence lifetimes were determined for different concentrations of potassium formate and acetic acid. These results indicate that the UO2+2 ion forms inner sphere complexes with the two ligands mentioned.  相似文献   

2.
The nanocrystal samples of titanium dioxide doped with europium ion (Eu3+/TiO2 nanocrystal) are synthesized by the sol-gel method with hydrothermal treatment. The Eu3+ contents (molar ratio) in the samples are 0, 0.5%, 1%, 2%, 3% and 4%. The X-ray diffraction, UV-Vis spectroscopy data and scanning electron microscope image show that crystallite size is reduced by the doping of Eu3+ into TiO2. Comparing the Raman spectra of TiO2 with Eu3+/TiO2 (molar ratio Eu3+/TiO2=1%, 2% and 4%) nanocrystals at different annealing temperatures indicates that the anatase-to-rutile phase transformation temperatures of Eu3+/TiO2 nanocrystals are higher than that of TiO2. This is due to the formation of Eu-O-Ti bonds on the surface of the TiO2 crystallite, as characterized by the X-ray photoelectron spectroscopy. The photoluminescence spectra of TiO2 in Eu3+/TiO2 nanocrystals are interpreted by the surface self-trapped and defect-trapped exciton relaxation. The photoluminescence of Eu3+ in Eu3+/TiO2 nanocrystals has the strongest emission intensity at 2% of Eu3+ concentration.  相似文献   

3.
Eu2+- and Eu3+-Zn2GeO4 were prepared by the high temperature solid-state reaction method. The phase purity and crystallinity of Zn2GeO4:Eu samples were characterized by X-ray diffraction (XRD). The excitation spectra, the emission spectra and the luminescence decay curves of the Eu2+- and Eu3+-Zn2GeO4 were investigated. Zn2GeO4:Eu2+ gives a bluish-green luminescence with one emission band located at 467 nm, and Zn2GeO4:Eu3+ presents an reddish-orange color due to the transition (5D07FJ, J = 1 and 2) of the Eu3+ ions. The luminescence decay curves of Eu2+ and Eu3+ provide complementary evidence to the mixed valence of europium (Eu2+, Eu3+) in Zn2GeO4 host. These indicate that the mixed valence of europium (Eu2+, Eu3+) coexists in Zn2GeO4 host prepared in an oxidizing atmosphere. The abnormal reduction phenomenon of Eu3+→Eu2+ in Zn2GeO4 host prepared in an oxidizing atmosphere was reported and discussed on the basis of the charge compensation model.  相似文献   

4.
采用高温固相法制备了LiBaBO3:Eu2+绿色发光材料.测量了Eu2+浓度为1mol%时样品的激发与发射光谱,其发射光谱为双峰宽谱,主峰分别为482和507nm,与理论计算值符合很好;监测482nm发射峰时,对应激发光谱的峰值为287和365nm,监测507nm发射峰时,对应的激发峰为365和405nm.研究了Eu2+浓度对材料发射光谱的影响,结果显示,随Eu2+浓度的增大,蓝、绿发射峰均发生了  相似文献   

5.
This paper reports the photoluminescence and afterglow behavior of Eu2+ and Eu3+ in Sr3Al2O6 matrix co-doped with Dy3+. The samples containing Eu2+ and Eu3+ were prepared via solid-state reaction. X-ray diffraction (XRD), photo luminescent spectroscope (PLS) and thermal luminescent spectroscope (TLS) were employed to characterize the phosphors. The comparison between the emission spectra revealed that Sr3Al2O6 phosphors doped with Eu2+, Dy3+ and Eu3+, Dy3+ showed different photoluminescence. The phosphor doped with Eu3+, Dy3+ showed an intrinsic f-f transition generated from Eu3+, with two significant emissions at 591 and 610 nm. However, the phosphor doped with Eu2+, Dy3+ revealed a broad d-f emission centering around 512 nm. After the UV source was turned off, Eu2+, Dy3+ activated Sr3Al2O6 phosphor showed excellent afterglow while Eu3+, Dy3+ activated phosphor almost showed no afterglow. Thermal simulated luminescence study indicated that the persistent afterglow of Sr3Al2O6: Eu2+, Dy3+ phosphor was generated by suitable electron traps formed by the co-doped rare-earth ions (Dy3+) within the host.  相似文献   

6.
Spectra of Eu3+ in various dielectric matrices (Gd2O3:Eu3+, Y2O3:Eu3+, Eu2O3, and mSiO2/Gd2O3:Eu3+ mesoporous particles) are studied by local cathodoluminescence. The results allowed identification of the local environment of Er3+ ions in amorphous samples and detection of the monoclinic Eu2O3 phase impurity in samples with yttrium oxide. The cathodoluminescence spectra of chemically pure Y2O3, Eu2O3, and Gd2O3 are recorded. Conclusions about the structural features of the materials are made and confirmed by other methods (XRD and EPMA).  相似文献   

7.
BaWO4:Eu3+,Bi3+ phosphors have been prepared by the conventional high-temperature solid-state reaction and chemical precipitation. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) technologies. When the phosphors are prepared by the high-temperature solidstate reaction, Bi3+ doping into BaWO4:Eu3+ can increase the emission intensity of 613 nm. However, maximum emission at about 595 nm was observed in Eu3+,Bi3+-doped BaWO4 phosphors prepared by the chemical precipitation. The decay constants (monitored at 595 and/or 613 nm) are within 45–100 s. The color purity of the Ba0:865WO4: Eu0:11,Bi0:025 phosphor (prepared by chemical precipitation) was 100%. The emission mechanism of Eu3+,Bi3+ in the BaWO4 phosphors is briefly discussed.  相似文献   

8.
The phosphor, BaMgAl10O17:Eu2+, showing a blue emission band at about 450 nm was prepared by a normal solid-state reaction using BaCO3, Al2O3, MgO and Eu2O3 as starting materials with AlF3 as a flux. The study of combined Rietveld refinement and photoluminescence spectra was carried out to determine the structural parameters, such as lattice constants, the valence state of Eu, the site preference of Mg and site fractions of Mg and Eu. The occupancies of Eu and Mg were 0.022 and 0.526, respectively. The valence state of Eu was the divalent state because there was only one broad line at about 450 nm in the photoluminescence spectrum. The site preference of Mg atoms was the tetrahedral site of Al atoms surrounded by oxygen atoms in the spinel block. Lattice parameters decreased due to the difference of two ionic radii, Eu2+(1.09 Å) and Ba2+(1.34 Å), compared with those of BaMgAl10O17.  相似文献   

9.
In this work, we report the high temperature solid-state synthesis of red phosphors Sr2MgSi2O7: Eu3+ with various Eu3+ concentrations. Their luminescent properties at room temperature are investigated. The X-ray diffraction patterns indicate that the red phosphors powder conforms to the tetragonal Sr2MgSi2O7. Impurity structure appears when more than 20% Eu3+ is doped. The samples show a strong emission line at 615 nm and the intensity increases with the increase of Eu3+ concentration until concentration quenching occurs. Charge compensation assists in the reduction of the impurity structure and vacancies; hence the luminescent intensity is enhanced. The decay measurement indicates that the lifetime of Eu3+ emission is about 2-3 ms. Some of the Eu3+ can be reduced to Eu2+; this is also discussed.  相似文献   

10.
The emission intensity of the peak at 612 nm (5D07F2) of the Eu3+ ions activated SnO2 nanocrystals (doped and coated) is found to be sensitive to the nanoenvironment. We have compared the luminescence efficiencies of the nanocrystals of SnO2 doped by Eu2O3 with those of SnO2 coated by Eu2O3 and we found that the intensities are significantly higher in coated nanocrystals. Furthermore, it is clear from luminescence intensity measurements that Eu3+ ions occupy low symmetry sites in the Eu2O3 coated SnO2 nanocrystal. The analysis suggests that the radiative relaxation rate is higher in Eu2O3 coated SnO2 nanocrystals than Eu2O3 doped SnO2 nanocrystals due to the asymmetric environment of Eu3+ ions in coated samples.  相似文献   

11.
Eu3+-doped LiGd(MoO4)2 red phosphor was synthesized by solid-state reaction, and its photoluminescent properties were measured. The effect of Eu3+ doping concentration on PL intensity was investigated, and the optimum concentration of Eu3+ doped in LiGd(MoO4)2 was found to be 30 mol%. Compared with Y2O2S:0.05Eu3+, Na0.5Gd0.5MoO4:Eu3+ and KGd(MoO4)2:Eu3+, the LiGd(MoO4)2:Eu3+ phosphor showed a stronger excitation band around 395 nm and a higher intensity red emission of Eu3+ under 395 nm light excitation. For the first time, intensive red light-emitting diodes (LEDs) were fabricated by combining phosphor and a 395 nm InGaN chip, confirming that the LiGd(MoO4)2:Eu3+ phosphor is a good candidate for LED applications.  相似文献   

12.
The Eu3+ ion occupies two different crystallographic sites in (Y1−xEux)2O3 and (Gd1−xEux)2O3, with site symmetry S6 and C2. Energy transfer over more than 7 Å occurs from Eu3+ (S6) ions to Eu3+ (C2) ions. This is shown to be a direct one-phonon assisted process, in combination with a one-site resonant two-phonon assisted process at higher temperatures. For x = 1 there is energy migration over the Eu3+ (C2) sublattice to quenching impurities. The presence of cooperative absorption points to superexchange interaction between the Eu3+ ions.  相似文献   

13.
(Gd1?xEux)(BO2)3 (0≤x≤1) phosphors are synthesized by traditional high temperature solid state reaction. The photoluminescence (PL) properties of Gd(BO2)3 and Gd(BO2)3 activated with Eu3+ are investigated. The PL spectra exhibit the typical characteristic emission and excitation of Gd3+ and Eu3+ ions, and support the energy transfer taking place from Gd3+ to Eu3+ ions. The relationship between Eu3+ doping concentration and emission intensity is also studied. Even if all of the Gd3+ ions are substituted by Eu3+ ions, the concentration quenching between Eu3+ happens. However, the quenching is not complete. The luminescence decay curves are measured, and the lifetimes become short with the Eu3+ content increasing. The decreasing Gd3+ lifetimes also indicates that there exists efficient energy transfer between Gd3+ and Eu3+ ions.  相似文献   

14.
A new nanostructure-mediated approach was demonstrated to synthesize Eu3+-doped yttrium oxysulfates Y2O2SO4:Eu3+ giving rise to abnormally enhanced Eu3+ emission. Yttrium and europium salts, sodium dodecylsulfate (SDS), and urea at various Eu3+ concentrations were reacted in aqueous solution at 80, 85, and 87 °C to yield Eu3+-doped dodecylsulfate-templated yttrium oxide mesophases with straight-layered (S-type), concentric-layered (C-type) and layer-to-hexagonal transient-layered (T-type) structures, respectively. On calcination at 1000 °C, all of these mesophases were converted into Y2O2SO4:Eu3+ to exhibit luminescence bands including the 5D0-7F2 transition with a tendency in intensity to saturate or reach a maximum at 10-12 mol% Eu doping. The Eu3+ emissions for Y2O2SO4:Eu3+ mediated by the T- and C-type mesophases were enhanced in intensity by a factor of about two and three times, respectively, stronger than those for not only compositionally the same sulfate Y2O2SO4:Eu3+ obtained from yttrium-based sulfates but also Y2O3:Eu3+ obtained in the SDS-free system. In contrast, the emission intensities for the S-type-mesophase-mediated Y2O2SO4:Eu3+ were close to those for the latter sulfates. The abnormally enhanced emission is likely based on specific deformation of sulfate groups induced through the conversion of concentric dodecylsulfate-layers to straight sulfate-layers in the oxysulfate framework upon calcination.  相似文献   

15.
Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ luminescent thin films have been grown on Si(100) substrates using pulsed laser deposition. The films grown at different deposition conditions show different crystalline and morphology structures and luminescent characteristics. Although both cubic and monoclinic crystalline structures were observed in both Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ films, the cubic structure becomes more dominant for Li-doped Gd2O3:Eu3+ films. The photoluminescence brightness data obtained from Li-doped Gd2O3:Eu3+ films indicate that Si(100) is a promising substrate for growth of high-quality Li-doped Gd2O3:Eu3+ thin-film red phosphor. In particular, the incorporation of Li+ ions into the Gd2O3 lattice induced a change of crystallinity and enhanced surface roughness. Two major factors to determine photoluminescence brightness for Li-doped Gd2O3:Eu3+ films were crystalline phase and surface roughness. The highest emission intensity was observed with Gd1.84Li0.08Eu0.08O3, whose brightness was a factor of 2.1 larger than that of Gd2O3:Eu3+ films. This phosphor is promising for applications in flat-panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

16.
Orange-emissive Ce3+/Eu2+ co-doped Sr3Al2O5Cl2 phosphors were synthesized by a solid-state reaction. The large overlap between the emission spectrum of blue Sr3Al2O5Cl2:Ce3+ and the excitation spectrum of orange Sr3Al2O5Cl2:Eu2+, and the shortening trend in lifetime of Ce3+ donors with increasing Eu2+ concentration in Sr3Al2O5Cl2:Ce3+, Eu2+ provide the strong evidence of energy transfer from Ce3+ to Eu2+ ions. It supports that the orange emission intensity of the optimal co-doped phosphor is 1.5 times stronger than that of single Eu2+-doped one. The Sr3Al2O5Cl2:Ce3+, Eu2+ phosphor is a promising orange-emitting phosphor for warm-white-light-emitting diode because of its effective excitation in the near ultraviolet range.  相似文献   

17.
Sb3+-doped, Eu3+-doped and (Sb3+, Eu3+) co-doped YBO3 crystals have been synthesized using Y2O3, B2O3, SbCl3 and Eu2O3 as raw materials through a hydrothermal method. Phase-pure YBO3 crystal with hexagonal flake shape has been synthesized at 473 K for 3 days. The photoluminescent property of YBO3 with different activators were investigated using luminescent spectrometer at room temperature. The color of the (Sb3+, Eu3+) co-doped YBO3 crystal could be controlled from blue to red by changing the Sb3+/Eu3+ ratio in the initial reactants. The nearly white emission could be obtained through changing the Sb3+/Eu3+ ratio in reaction.  相似文献   

18.
《Radiation measurements》2000,32(4):343-348
Ultraviolet radiation induced changes in photoluminescence (PL) and thermally stimulated luminescence (TSL) of europium activated calcium sulphate (CaSO4:Eu3+, Eu2+) and terbium doped calcium fluoride (CaF2:Tb3+) phosphors have been studied. PL measurements suggest conversion of Eu3+ to Eu2+ on 254 nm irradiation corresponding to charge transfer band of Eu3+ ions and reduction of Eu2+ ions with 365 nm illumination representing a f–d transition of Eu2+ ions. Similar studies carried out on CaF2:Tb3+ phosphor, however, do not show any significant wavelength specific changes. The integrated TSL output appears to be rate-dependent for both phosphors. The wavelength dependent changes in TSL output observed for CaSO4:Eu phosphor have been correlated with those obtained in PL studies. The changes in TSL and PL characteristics of CaF2:Tb3+ phosphor have been explained on the basis of stabilisation of traps based on matrix specific charge similarities.  相似文献   

19.
The electric-quadrupole interactions at the Eu sites in Eu3V2O7 and Eu2VO4 oxides have been studied at room temperature with151Eu Mössbauer spectroscopy. Both divalent and trivalent Eu ions were found in the oxides. The fraction of Eu2+ is 17.1(8)% in Eu3V2O7 and 39.0(1.6) % in Eu2VO4. The values of the quadrupole coupling constant, eVzzQg, obtained from the fits using a full Hamiltonian method are ?6.594(50) and ?8.043(65) mm/s for Eu3+, and ?13.168(402) and ?18.032(134) mm/s for Eu2+, respectively in Eu3V2O7 and Eu2VO4. The magnitude of eVzzQg in Eu2VO4 is the largest ever reported for Eu2+ in any Eu oxide system.  相似文献   

20.
This work investigates the stability of Eu2+ and Eu3+ in some Sr-based inorganic compounds. Generally reducing condition is adopted in order to obtain Eu2+, however, the Eu doped SrAl2O4/SrLaAlO4 case indicates that for some compounds Eu3+ is stabilized even in reducing atmosphere. Bond valence method is applied to explain this phenomenon and it reveals that crystal structure also determines the valence state of europium cations along with reducing/oxidizing condition. An analysis of other Eu doped Sr-based materials is performed which shows the relationship between Eu2+/Eu3+ stability and the Global Instability Index (GII). This research provides a guideline for synthesizing specific novel Eu2+/Eu3+ phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号