首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Depending on their nature, different chemical bonds show vastly different stability with covalent bonds being the most stable ones that rupture at forces above nanonewton. Studies have revealed that ferric-thiolate bonds are highly covalent and are conceived to be of high mechanical stability. Here, we used single molecule force spectroscopy techniques to directly determine the mechanical strength of such highly covalent ferric-thiolate bonds in rubredoxin. We observed that the ferric-thiolate bond ruptures at surprisingly low forces of ~200 pN, significantly lower than that of typical covalent bonds, such as C-Si, S-S, and Au-thiolate bonds, which typically ruptures at >1.5 nN. And the mechanical strength of Fe-thiolate bonds is observed to correlate with the covalency of the bonds. Our results indicated that highly covalent Fe-thiolate bonds are mechanically labile and display features that clearly distinguish themselves from typical covalent bonds. Our study not only opens new avenues to investigating this important class of chemical bonds, but may also shed new lights on our understanding of the chemical nature of these metal thiolate bonds.  相似文献   

2.
Although many methods can be employed to transfer energy to a chemical reaction, mechanical energy has not been widely used: It is difficult to apply mechanical forces high enough to lead to breaking bonds to small molecules. Work is the product of force and displacement but when the distances are small, very high forces are needed to obtain sufficient energy to break a bond. The situation is different in polymers, where the path length can be high. Here, bond cleavage, cycloreversions and isomerisations can be observed when mechanical energy is supplied, both in solution and solid systems. Mechanical energy can lead to different mechanistic pathways than those observed under thermal conditions or irradiation. Practical applications of the mechanochemistry of polymers are only just emerging and range from a better understanding of polymer decomposition under force to the development of strain sensors using mechanochromic polymers.  相似文献   

3.
According to classical thermodynamics, biological ligand-receptor bonds should have a median lifetime of about 2 ms, and nearly half should have lifetimes of nanoseconds to microseconds. As a result, it is clear that many "weak" bonds are indispensable for cellular adhesion, signaling, and other critical events. However, the forces required to rupture such weak bonds and the adhesion they provide between surfaces are largely unknown because of their propensity to dissociate rapidly from a measuring probe. To measure such weak bond forces quantitatively, we followed nature's example of adhering surfaces with many weak ligand-receptor bonds. Analogously to how multiplicity promotes stronger adhesion between cellular membranes, multiple bonds created significant adhesion between model cellular surfaces. Specifically, we used an automated surface forces apparatus to measure the adhesion between complementary surfaces bearing dense populations of streptavidin receptors and flexible PEG tethers that each anchored a weakly binding ligand (HABA, or 2-(4-hydroxyphenylazo) benzoic acid). We show that this short-lived bond (<100 mus) leads to low forces of dissociation and only a small fraction being simultaneously bound. These results are significant because the HABA-streptavidin bond energy ( approximately 10.5kBT) is similar to the average found in nature (14.7kBT). The measurements exemplify how a single ligand-receptor bond may fall apart and rejoin many times before completing a cellular function yet can still exhibit strength in numbers.  相似文献   

4.
The specific interactions between sugar-binding proteins (lectins) and their complementary carbohydrates mediate several complex biological functions. There is a great deal of interest in uncovering the molecular basis of these interactions. In this study, we demonstrate the use of an efficient one-step amination reaction strategy to fabricate carbohydrate arrays based on mixed self-assembled monolayers. These allow specific lectin carbohydrate interactions to be interrogated at the single molecule level via AFM. The force required to directly rupture the multivalent bonds between Concanavalin A (Con A) and mannose were subsequently determined by chemical force microscopy. The mixed self-assembled monolayer provides a versatile platform with active groups to attach a 1-amino-1-deoxy sugar or a protein (Con A) while minimizing non-specific adhesion enabling quick and reliable detection of rupture forces. By altering the pH of the environment, the aggregation state of Con A was regulated, resulting in different dominant rupture forces, corresponding to di-, tri- and multiple unbinding events. We estimate the value of the rupture force for a single Con A-mannose bond to be 95 ± 10 pN. The rupture force is consistent even when the positions of the binding molecules are switched. We show that this synthesis strategy in conjunction with a mixed SAM allows determination of single molecules bond with high specificity, and may be used to investigate lectin carbohydrate interactions in the form of carbohydrate arrays as well as lectin arrays.  相似文献   

5.
Single-molecule force spectroscopy allows investigation of the effect of mechanical force on individual bonds. By determining the forces necessary to sufficiently activate bonds to trigger dissociation, it is possible to predict the behavior of mechanophores. The force necessary to activate a copper biscarbene mechano-catalyst intended for self-healing materials was measured. By using a safety line bypassing the mechanophore, it was possible to pinpoint the dissociation of the investigated bond and determine rupture forces to range from 1.6 to 2.6 nN at room temperature in dimethyl sulfoxide. The average length-increase upon rupture of the Cu−C bond, due to the stretching of the safety line, agrees with quantum chemical calculations, but the values exhibit an unusual scattering. This scattering was assigned to the conformational flexibility of the mechanophore, which includes formation of a threaded structure and recoiling of the safety line.  相似文献   

6.
Flex-activated mechanophores can be used for small-molecule release in polymers under tension by rupture of covalent bonds that are orthogonal to the polymer main chain. Using static and dynamic quantum chemical methods, we here juxtapose three different mechanical deformation modes in flex-activated mechanophores (end-to-end stretching, direct pulling of the scissile bonds, bond angle bendings) with the aim of proposing ways to optimize the efficiency of flex-activation in experiments. It is found that end-to-end stretching, which is a traditional approach to activate mechanophores in polymers, does not trigger flex-activation, whereas direct pulling of the scissile bonds or displacement of adjacent bond angles are efficient methods to achieve this goal. Based on the structural, energetic and electronic effects responsible for these observations, we propose ways of weakening the scissile bonds experimentally to increase the efficiency of flex-activation.  相似文献   

7.
Increasing the mechanical stability of artificial polymer materials is an important task in materials science, and for this a profound knowledge of the critical mechanoelastic properties of its constituents is vital. Here, we use AFM-based single-molecule force spectroscopy measurements to characterize the rupture of a single silicon-oxygen bond in the backbone of polydimethylsiloxane as well as the force-extension behavior of this polymer. PDMS is not only a polymer used in a large variety of products but also an important model system for highly flexible polymers. In our experiments, we probe the entire relevant force range from low forces dominated by entropy up to the rupture of the covalent Si-O bonds in the polymer backbone at high forces. The resulting rupture-force histograms are investigated with microscopic models of bond rupture under load and are compared to density functional theory calculations to characterize the free-energy landscape of the Si-O bond in the polymer backbone.  相似文献   

8.
Single-molecule mechanical manipulation has enabled quantitative understanding of not only the kinetics of both bond rupture and protein unfolding, but also the free energy landscape of chemical bond and/or protein folding. Despite recent studies reporting the role of loading device in bond rupture, a loading device effect on protein unfolding mechanics has not been well studied. In this work, we have studied the effect of loading-device stiffness on the kinetics of both bond rupture and protein unfolding mechanics using Brownian dynamics simulations. It is shown that bond rupture forces are dependent on not only loading rate but also the stiffness of loading device, and that protein unfolding mechanics is highly correlated with the stiffness of loading device. Our study sheds light on the importance of loading device effect on the mechanically induced bond ruptures and protein unfolding.  相似文献   

9.
Long polymer chains inevitably get tangled into knots. Like macroscopic ropes, polymer chains are substantially weakened by knots and the rupture point is always located at the “entry” or “exit” of the knot. However, these phenomena are only poorly understood at a molecular level. Here we show that when a knotted polyethylene chain is tightened, most of the stress energy is stored in torsions around the curved part of the chain. The torsions act as “work funnels” that effectively localize mechanical stress in the immediate vicinity of the knot. As a result, the knot “chokes” the chain at its entry or exit, thus leading to bond rupture at much lower forces than those needed to break a linear, unknotted chain. Our work not only explains the weakening of the polymer chain and the position of the rupture point, but more generally demonstrates that chemical bonds do not have to be extensively stretched to be broken.  相似文献   

10.
The characteristics of the pnicogen bond are explored using a variety of quantum chemical techniques. In particular, this interaction is compared with its halogen and chalcogen bond cousins, as well as with the more common H‐bond. In general, these bonds are all of comparable strength. More specifically, they are strengthened by the presence of an electronegative substituent on the electron‐acceptor atom, and each gains strength as one moves down the appropriate column of the periodic table, for example, from N to P to As. These noncovalent bonds owe their stability to a mixture in nearly equal parts of electrostatic attraction and charge transfer, along with a smaller dispersion component. The charge transfer arises from the overlap between the lone pair of the electron donor and a σ* antibond of the acceptor. The angular characteristics of the equilibrium geometry result primarily from a compromise between electrostatic and induction forces. Angular distortions of the H‐bond are typically less energetically demanding than comparable bends of the other noncovalent bonds. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
Multivalency is present in many biological and synthetic systems. Successful application of multivalency depends on a correct understanding of the thermodynamics and kinetics of this phenomenon. In this Article, we address the stability and strength of multivalent bonds with force spectroscopy techniques employing a synthetic adamantane/β-cyclodextrin model system. Comparing the experimental findings to theoretical predictions for the rupture force and the kinetic off-rate, we find that when the valency of the complex is increased from mono- to di- to trivalent, there is a transition from quasi-equilibrium, with a constant rupture force of 99 pN, to a kinetically dependent state, with loading-rate-dependent rupture forces from 140 to 184 pN (divalent) and 175 to 210 pN (trivalent). Additional binding geometries, parallel monovalent ruptures, single-bound divalent ruptures, and single- and double-bound trivalent ruptures are identified. The experimental kinetic off-rates of the multivalent complexes show that the stability of the complexes is significantly enhanced with the number of bonds, in agreement with the predictions of a noncooperative multivalent model.  相似文献   

13.
In this study, two bimaterial joining systems, namely, titanium coated glass/polyimide (TiGPI) and titanium/polyimide (TiPI) are considered. The joints were prepared by employing transmission type laser‐joining procedure. Both the TiGPI and TiPI bimaterial systems were subjected to tensile loading using a microtester, and failure loads per unit bond length were documented. The average failure strengths of the TiPI and TiGPI samples were found to be 5.1 and 7.3 N/mm, respectively. It is thus clear from the failure data that the TiGPI joints are stronger (1.4 times) than the TiPI joints although same chemical bonds between titanium and polyimide (PI) exist for both the systems. It is thus believed that material surface morphology has contributed to such variation in the microjoint strengths. Later, atomic force microscopy (AFM) of titanium surfaces of both titanium coated glass and titanium foil was performed, and was observed that they had root mean squared (RMS) surface roughnesses of 220 and 55 nm, respectively. The surface roughness provides improved surface contact area, number of chemical bonds, and mechanical interlocking that may have resulted in higher bond strength for the TiGPI system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
It is known that strong hydrogen‐bonding interactions play an important role in many chemical and biological systems. However, weak or very weak hydrogen bonds, which are often difficult to detect and characterize, may also be relevant in many recognition and reaction processes. Fluorine serving as a hydrogen‐bond acceptor has been the subject of many controversial discussions and there are different opinions about it. It now appears that there is compelling experimental evidence for the involvement of fluorine in weak intramolecular or intermolecular hydrogen bonds. Using established NMR methods, we have previously characterized and measured the strengths of intermolecular hydrogen‐bond complexes involving the fluorine moieties CH2F, CHF2, and CF3, and have compared them with the well‐known hydrogen‐bond complex formed between acetophenone and the strong hydrogen‐bond donor p‐fluorophenol. We now report evidence for the formation of hydrogen bonds involving fluorine with significantly weaker donors, namely 5‐fluoroindole and water. A simple NMR method is proposed for the simultaneous measurement of the strengths of hydrogen bonds between an acceptor and a donor or water. Important implications of these results for enzymatic/chemical reactions involving fluorine, for chemical and physical properties, and for ligand/protein 19F NMR screening are analyzed through experiments and theoretical simulations.  相似文献   

15.
Bond order indexes are useful measures that connect quantum mechanical results with chemical understanding. One of these measures, the natural bond order index, based on the natural resonance theory procedure and part of the natural bond orbital analysis tools, has been proved to yield reliable results for many systems. The procedure's computational requirements, nevertheless, scales so highly with the number of functions in the basis set and the delocalization of the system, that the calculation of this bond order is limited to small or medium size molecules. We present in this work a bond order index, the first order perturbation theory bond order (fopBO), which is based on and strongly connected to the natural bond orbital analysis tools. We present the methodology for the calculation of the fopBO index and a number of test calculations that shows that it is as reliable as the natural bond orbital index, with the same weak sensitivity to variations among commonly used basis sets and, as opposed to the natural bond order index, suitable for the study of large systems, such as most of those of biological interest.  相似文献   

16.
We develop a hybrid computational approach to examine the mechanical properties and self-healing behavior of nanogel particles that are cross-linked by both stable and labile bonds. The individual nanogels are modeled via the lattice spring model (LSM), which is an effective method for probing the response of materials to mechanical deformation. The cross-links between the nanogels are simulated via the hierarchical Bell model (HBM), which allows us to capture the rupturing of multiple parallel bonds as the result of an applied force. Because the labile bonds are relatively reactive, they can reform after they have been ruptured. To incorporate the possibility of bonds reforming, we modify the HBM formalism and validate the modified HBM by considering a system of two surfaces, which are connected by multiple parallel bonds. We then use our hybrid HBM/LSM to simulate the behavior of the cross-linked nanogels under a tensile deformation. In these simulations, each labile linkage between the nanogels contains at most N parallel bonds. We vary the fraction of labile linkages and the value of N in these linkages to determine the optimal conditions for improving the robustness of the material. Although numerous parallel bonds within a linkage enhance the strength of the material, these bonds diminish the ductility and the ability of the material to undergo the structural rearrangements that are necessary for self-repair. For a relatively low fraction of labile bonds and N ≤ 4, however, we can significantly improve the strength of the material and preserve the self-healing properties. For instance, a sample with 30% labile linkages and N = 4 per linkage is roughly 200% stronger than a sample that is cross-linked solely by stable bonds and can still undergo self-repair in response to the tensile deformation. The results reveal how mechanical stress can lead not only to the appearance of cavities within the material but also to bond formation that "heals" these cavities and thus prevents the catastrophic failure of the material.  相似文献   

17.
A hydrogen bond of the type C?H???X (X=O or N) is known to influence the structure and function of chemical and biological systems in solution. C?H???O hydrogen bonding in solution has been extensively studied, both experimentally and computationally, whereas the equivalent thermodynamic parameters have not been enumerated experimentally for C?H???N hydrogen bonds. This is, in part, due to the lack of systems that exhibit persistent C?H???N hydrogen bonds in solution. Herein, a class of molecule based on a biologically active norharman motif that exhibits unsupported intermolecular C?H???N hydrogen bonds in solution has been described. A pairwise interaction leads to dimerisation to give bond strengths of about 7 kJ mol?1 per hydrogen bond, which is similar to chemically and biologically relevant C?H???O hydrogen bonding. The experimental data is supported by computational work, which provides additional insight into the hydrogen bonding by consideration of electrostatic and orbital interactions and allowed a comparison between calculated and extrapolated NMR chemical shifts.  相似文献   

18.
The mechanical properties of carbon nanotubes such as low density, high stiffness, and exceptional strength make them ideal candidates for reinforcement material in a wide range of high-performance composites. Molecular dynamics simulations are used to predict the tensile response of fibers composed of aligned carbon nanotubes with intermolecular bonds of interstitial carbon atoms. The effects of bond density and carbon nanotube length distribution on fiber strength and stiffness are investigated. The interstitial carbon bonds significantly increase load transfer between the carbon nanotubes over that obtained with van der Waals forces. The simulation results indicate that fibers with tensile strengths to 60 GPa could be produced by employing interstitial cross-link atoms. The elastic modulus of the fibers is also increased by the bonds.  相似文献   

19.
The distribution of stress at macroscopic and molecular levels can dramatically affect mechanical properties. This paper explores both these aspects. In the first part, quenching operations for polycarbonate and polystyrene were shown to develop favorable residual stresses as well as structural alterations (as manifested by changes in density, hardness, DSC results, etc.). The changes in these glassy polymers can be accompanied by as much as an order of magnitude increase in impact strength and fatigue life. In the other phase of our study, various analytical methods were used to investigate phenomena associated with fracture in oriented semi-crystalline polymers. In the studies reported here, the combined effects of stress and environmental agents on mechanical strength of nylon, polyethylene, and Kevlar fibers were measured. These results, in conjunction with investigations of bond rupture kinetics, suggest that fracture in these materials involve thermally activated chain scission in which the activation energy is aided by stress and the chemical environment. Different mechanisms appear to dominate fracture in spherulitic forms of chemically similar polymers.  相似文献   

20.
A reaction rate model of fracture in polymer fibers is described. This model assumes that bond rupture is governed by absolute reaction rate theory with a stress-aided activation energy. It is demonstrated that the key in obtaining good agreement between the model and experiment lies in taking proper account of the variation of stress on the tie-chain molecules. The more taut chains rupture first, and the load is redistributed among the remaining unruptured tie chains. The effect of varying the temperature both in the model and in experiments on fracture in fibers is explored. Good agreement between predictions of the model and experiment is possible only with an undeterstanding of the distribution in stress on the tie chains. The distribution in stress on the chains was experimentally determined by monitoring the kinetics of bond rupture with electron paramagnetic resonance (EPR) spectroscopy. Temperature is found to have two effects on macroscopic strength. (1) The thermal energy aids the atomic stress in breaking the atomic bonds; as a consequence the rate of bond rupture of a family of bonds under a given molecular stress is increased. In this respect temperature might be viewed as decreasing the “strength” of a bond. (2) Temperature also serves to “loosen” the molecular structure and in this way modify the distribution in stress on the tie chains. To explain bond rupture and macroscopic fracture behavior quantitatively, account must be taken of both effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号