首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the narrow secondary emission lines under two-photon just- resonance excitation of the excitonic molecule in CuCl is discussed. Luminescence due to cold, but not Bose-condensed excitonic molecules is concluded to be dominant. Recent experiments to discriminate between Raman scattering and luminescence by picosecond spectroscopy on these emissions are criticized.  相似文献   

2.
Using a picosecond laser and a streak camera we have observed the time dependence of the luminescence intensity of free excitons, bound excitons, and excitonic molecules in CdS. The observed kinetics show that the P band is due to bimolecular emission from free excitons and that bound excitons are generated from free excitons through monomelecular process and excitonic molecule through bimolecular process.  相似文献   

3.
Results on picosecond luminescence and excite-and-probe transmission as well as transient grating measurements for highly excited CdS measured at a bath temperature of 5 K will be presented. The luminescence and optical gain both due to electron-hole plasma and excitonic molecule recombination are observed. The electron-hole plasma decays very fast by bimolecular recombination of electrons and holes in the plasma and diffusion of the carrier toward the low density regions, and transforms into excitons and excitonic molecules within 100–200 ps. The possibility of electron-hole liquid formation is definitely excluded. The exciton and excitonic molecule decay rather slowly and govern the optical properties for times longer than 200 ps.  相似文献   

4.
本文首次研究了ZnSe-ZnTe多量子阱在室温下的反射型皮秒激子光双稳,实验结果表明,ZnSe-ZnTe多量子阱在室温下的反射型皮秒光双稳的阈值光强和对比度分别为1.1MW/cm2和6:1.根据测量得到的ZnSe-ZnTe多量子阱在室温下的激子吸收光谱及激子的非线性吸收理论,归结ZnSe-ZnTe多量子阱室温下的皮秒光双稳的主要非线性机理为ZnSe-ZnTe多量子阱的激子饱和吸收引起的折射率变化.  相似文献   

5.
本文首次研究了ZnSe-ZnTe多量子阱在室温下的反射型皮秒激子光双稳,实验结果表明,ZnSe-ZnTe多量子阱在室温下的反射型皮秒光双稳的阈值光强和对比度分别为1.1MW/cm2和6:1.根据测量得到的ZnSe-ZnTe多量子阱在室温下的激子吸收光谱及激子的非线性吸收理论,归结ZnSe-ZnTe多量子阱室温下的皮秒光双稳的主要非线性机理为ZnSe-ZnTe多量子阱的激子饱和吸收引起的折射率变化.  相似文献   

6.
We illustrate the potential of the density matrix theory for investigation of optical properties of arbitrary single‐walled carbon nanotubes (CNTs). We have performed microscopic calculations of excitonic absorption spectra for CNTs of different chiral angles and diameters. The obtained results are in good agreement with experiments, in particular the excitonic binding energies match well both experiments and ab initio calculations. Furthermore, we show the strength of our approach by presenting calculations of the ultrafast Coulomb driven non‐equilibrium dynamics in CNTs. We find excitation induced dephasing on the picosecond time scale depending on the excitation strength. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The theory of the electronic excitations in a highly excited semiconductor is presented. The relaxation processes, the formation of excitons and excitonic molecules, the interaction among the various forms of electronic excitations, as well as their optical and thermodynamical properties are analyzed. At low temperatures one expects condensations into the quantum statistically degenerate phases of the excitonic molecules and of the electron-hole plasma. The physical properties of these low temperature phases are investigated. Possibilities and previous attempts to observe the Bose-Einstein condensation in excitonic systems are discussed critically. The experimental observations of the electron-hole liquid phase transition are reviewed.  相似文献   

8.
Jian-Qi Zhang 《Physics letters. A》2010,374(37):3818-3822
We show that three initially nonresonant quantum dots (QDs) could be used to generate W-type entangled states with the application of a single detuned light via the ac Stark effect. This gives a way to prepare the highly entangled excitonic states in the picosecond time scale by controlling the interactions between QDs.  相似文献   

9.
Excited states of excitonic molecules are found in the study of the two-photon-resonant Raman scattering. These states consist of four levels and have binding energies of 1.0–1.8 meV, which are very small compared with those of the ground states. They are considered to be the rotational and vibrational states of excitonic molecules.  相似文献   

10.
A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale. Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented theory.  相似文献   

11.
The electronic excitations in direct gap semiconductors interact strongly with the photon field. We discuss both the experimental and the theoretical aspects of the optical properties of these materials under strong optical excitation. We distinguish between intermediate excitation levels at which the electronic excitations form a dense system of excitons and excitonic molecules and very high excitation levels at which a degenerate electron-hole plasma occurs. The optical spectra of dense excitonic systems, which are mainly observed in copper halides and II–VI compounds, are shown to be determined mainly by the interaction processes between excitonic molecules, polaritons and free carriers. The optical properties of the electron-hole plasma, which has been observed in II–VI and especially in III–V compounds, can be understood only by taking into account many-body effects, such as dynamical screening of the Coulomb interactions, plasmon-assisted transitions and excitonic enhancement.  相似文献   

12.
Time-resolved luminescence spectra of excitonic molecules in CuCl created by the two-photon resonance excitation are studied at 4.2 K with a time resolution of ~ 60 psec. Two sharp emission lines observed are ascribed to the radiative decay of “cold” excitonic molecules with k ~ 2K0. Stimulated emission process gives a considerable influence on luminescence properties.  相似文献   

13.
We demonstrate coherent nonlinear-optical control of excitons in a pair of quantum dots (QDs) coupled via dipolar interaction. The single-exciton population in the first QD is controlled by resonant picosecond excitation, giving rise to Rabi oscillations. As a result, the exciton transition in the second QD is spectrally shifted and concomitant Rabi oscillations are observed. We identify coupling between permanent excitonic dipole moments as the dominant interaction mechanism, whereas quasiresonant (F?rster) energy transfer is weak. Such control schemes based on dipolar interaction are a prerequisite for realizing scalable quantum logic gates.  相似文献   

14.
《Current Applied Physics》2020,20(7):895-898
A single-walled carbon nanotube (SWCNT) with conjugated polymer molecules is analyzed via optical spectroscopy. The presence of strongly localized excitonic states in the SWCNT is confirmed using time-integrated photoluminescence (PL). The PL spectrum exhibits extremely narrow width (~0.8 meV) which is attributed to the strong confinement of the states by polymer molecules. In addition, I observed that the excited states are gradually filled as a function of the excitation power, which supports the localized excitonic behavior. Only the ground excitonic state is observed at low excitation powers, but three additional PL peaks appear as the excitation power is increased. Especially, the power-dependent PL spectrum shows a blueshift and increased width, which can be elucidated in terms of quantum confined stark effect and the screening of induced electric fields. Overall, I demonstrate that the presence of polymer molecules induces several localized states in a single SWCNT.  相似文献   

15.
We have studied density-dependent time-resolved photoluminescence from a 80 A InGaAs/GaAs single quantum well excited by picosecond pulses. We succeed in giving evidence for the transition from an exciton-dominated population to an unbound electron-hole pair population as the pair density increases. For pair densities below this excitonic Mott transition we observe a spectrally separate emission from free electron-hole pairs in addition to excitonic luminescence, thereby proving the coexistence of both species. Exciton binding energy and band gap remain unchanged even near the upper bound of this coexistence region. Above the Mott density we observe a purely exponential high energy tail of the photoluminescence and a redshift of the band gap with pair density. The transition occurs gradually between 1 x 10(10) and 1 x 10(11) cm(-2) at the carrier temperatures of our experiment.  相似文献   

16.
We present a time resolved experiment in which we dynamically tailor the occupation and temperature of a photogenerated exciton distribution in QWs by excitation with two delayed picosecond pulses. The modification of the excitonic distribution results in ultrafast changes in the PL dynamics. Our experimental results are well accounted by a quasiequilibrium thermodynamical model, which includes the occupation and momentum distribution of the excitons. We use this model and the two-pulse experimental technique to study the polariton dynamics in InGaAs-based microcavities in the strong coupling regime. In particular, we demonstrate that resonantly injected upper polaritons mainly relax to the lower polariton branch via scattering to large momentum polariton states, producing the warming of the polariton reservoir.  相似文献   

17.
The dynamics of a nanoparticle during its dipole interaction with an excitonic excitation in an extended quasi-one-dimensional polarizable medium is investigated. Bundles of J-aggregates of dye molecules are considered as an example of the latter. The nonlocal excitonic–mechanical interaction between the field of an amplifying or absorbing nanoparticle and excitons in a bundle has been simulated numerically. It has been found that the interaction between the field of the induced nanoparticle dipole and the fields of the molecular dipoles in an aggregate can lead to a change in the particle trajectory and excitonic pulse shape. The possibility of controlling the nanoparticle by excitonic pulses and the reverse effect of the nanoparticle field on the dynamics of excitons due to the nonlocal excitonic–mechanical interaction has been demonstrated.  相似文献   

18.
We propose a simple method to estimate the biexcitonic contribution to the excitonic non-linearity. The method is based on the time integrated four-wave mixing (TI FWM) with picosecond pulses. The TI FWM signal, which is measured as a function of the delay between pump and test pulses, shows shift towards positive and negative time delay when the laser is tuned at the exciton and biexciton resonance, respectively. We show theoretically that the magnitude of the shift allows us to estimate the biexcitonic contribution to the third-order non-linearity at the fundamental band edge.  相似文献   

19.
It is observed that excitonic molecules in CdSe exhibit the Bose condensation when excitation is given at 1.8–4.2 K by pico-second light pulses from a mode-locked glass laser. Strong evidence is provided by the appearance of an extremely sharp luminescence line produced from the excitonic molecules condensed to the k = 0 state.  相似文献   

20.
The direct excitation of excitonic molecule due to the two-photon absorption process is shown to be strongly enhanced because of two effects of the resonance and the giant oscillator strength as known for the bound exciton. Then it is pointed out that the existence of the excitonic molecule can be confirmed also by this two-photon absorption spectroscopy. We discuss also the property of the excitonic molecules highly excited by this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号