首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The typical preparation route of carbon‐supported metallic catalyst is complex and uneconomical. Herein, we reported a thiol‐assisted one‐pot method by using 3‐mercaptopropionic acid (MPA) to synthesize carbon‐supported metal nanoparticles catalysts for efficient electrocatalytic reduction of carbon dioxide (CO2RR). We found that the synthesized Au?MPA/C catalyst achieves a maximum CO faradaic efficiency (FE) of 96.2% with its partial current density of ?11.4 mA/cm2, which is much higher than that over Au foil or MPA‐free carbon‐supported Au (Au/C). The performance improvement in CO2RR over the catalyst is probably derived from the good dispersion of Au nanoparticles and the surface modification of the catalyst caused by the specific interaction between Au nanoparticles and MPA. This thiol‐assisted method can be also extended to synthesize Ag?MPA/C with enhanced CO2RR performance.  相似文献   

2.
A three‐dimensional (3D) nitrogen‐doped reduced graphene oxide (rGO)–carbon nanotubes (CNTs) architecture supporting ultrafine Pd nanoparticles is prepared and used as a highly efficient electrocatalyst. Graphene oxide (GO) is first used as a surfactant to disperse pristine CNTs for electrochemical preparation of 3D rGO@CNTs, and subsequently one‐step electrodeposition of the stable colloidal GO–CNTs solution containing Na2PdCl4 affords rGO@CNTs‐supported Pd nanoparticles. Further thermal treatment of the Pd/rGO@CNTs hybrid with ammonia achieves not only in situ nitrogen‐doping of the rGO@CNTs support but also extraordinary size decrease of the Pd nanoparticles to below 2.0 nm. The resulting catalyst is characterized by scanning and transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and X‐ray photoelectron spectroscopy. Catalyst performance for the methanol oxidation reaction is tested through cyclic voltammetry and chronoamperometry techniques, which shows exceedingly high mass activity and superior durability.  相似文献   

3.
王凌翔  王亮  张建  王海  肖丰收 《催化学报》2018,39(10):1608-1614
CO催化氧化是一个重要的经典反应,与许多应用息息相关,包括痕量CO气体检测、汽车尾气净化和安全防护等,吸引了人们广泛的研究兴趣.负载型Au纳米颗粒在CO氧化等许多反应中有着与众不同的催化活性,具有广泛的应用前景,但依然存在着稳定性差、易团聚失活的问题.人们通过应用多孔载体隔离Au纳米颗粒,在Au纳米颗粒表面覆盖金属氧化物、二氧化硅或碳,以及对Au纳米粒子进行封装等方法解决这些问题.尤其是利用金属氧化物与Au纳米粒子间的强相互作用对其进行覆盖或封装,有效地提高了Au催化材料的稳定性.但以上策略操作流程复杂,不利于应用.本文发展了一种简单有效的方法,通过EDTA的络合作用引入CeOx对Au纳米粒子进行修饰,得到的CeOx@Au/SiO2催化剂活性和耐久性明显提升.采用X射线衍射(XRD)和高分辨透射电子显微镜(HRTEM)证明了CeOx成功地修饰在Au纳米颗粒上.且通过EDTA引入CeOx所制备的CeOx@Au/SiO2催化剂结构明显不同于直接加入纳米CeO2所得到的CeOx-Au/SiO2的结构.EDTA的络合作用能有效地连结Ce与Au物种,经焙烧消除EDTA后,加强了CeOx与Au间相互作用,最终在Au纳米粒子表面形成丰富的CeOx颗粒与原子级厚度的CeOx层.进一步应用X射线光电子能谱(XPS)和氢气程序升温还原(H2-TPR)等手段研究了CeOx修饰对Au纳米粒子的影响.XPS结果表明,CeOx@Au/SiO2催化剂带正电的Au+和Au3+的浓度明显高于一般的Au/SiO2和直接加入CeO2制备得到的CeOx-Au/SiO2催化剂.H2-TPR同样表明,CeOx修饰调变了Au纳米粒子的氧化还原性.这些均对其在CO催化氧化反应中的催化活性具有重要影响将CeOx@Au/SiO2催化剂用于CO催化氧化反应中,160°C时,CO转化率达98.8%,至180°C后实现了CO的完全转化.而一般的Au/SiO2催化剂在160°C时CO转化率仅为4.0%,CO的完全转化则需340°C.直接加入纳米CeO2所得到的CeOx-Au/SiO2催化剂,其催化活性略有提升,CO完全转化所需的温度为300°C.这充分证明了通过CeOx修饰Au纳米粒子,能有效提升其催化活性.原位漫反射红外光谱(DRIFT)结果表明,CeOx修饰促进了CO在Au表面的吸附,并能形成[Au(CO)2]δ+物种;同时还观察到大量的单齿CO32? 物种信号,反映了CeOx@Au/SiO2催化剂表面存在丰富的活性氧物种.通入O2后,观察到了大量CO32?物种信号和气相CO2,印证了催化剂表面发生的CO催化氧化过程,也表明其具有非常高的催化活性.考察了CeOx@Au/SiO2催化剂的耐久性,发现经50 h CO氧化反应,催化剂依然能有效保持活性.相比之下,Au/SiO2催化剂经10 h反应后,开始明显失活.由此可见,CeOx@Au/SiO2催化剂具有相当高的耐久性.在600°C将催化剂焙烧3 h,发现Au/SiO2催化剂中Au纳米粒子存在明显团聚现象,而CeOx@Au/SiO2催化剂的Au纳米粒子依然均匀分布在载体表面,且粒径未发生明显变化.  相似文献   

4.
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]⋅n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was −67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions.  相似文献   

5.
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]?n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was ?67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions.  相似文献   

6.
The present work reports the facile synthesis and characterization of carbon‐supported porous Pd shell coated Au nanochain networks (AuPdNNs/C). By using Co nanoframes as sacrificial templates, AuPdNNs/C series have been prepared by a two‐step galvanic replacement reaction (GRR) technique. In the first step, the Au metal precursor, HAuCl4, reacts spontaneously with the formed Co nanoframes through the GRR, resulting in Au nanochain networks (AuNNs). The second GRR is performed with various concentrations of Pd precursor (0.1, 1, and 10 mM PdCl2), resulting in AuPdNNs/C. The synthesized AuPdNNs/C series are investigated as electrocatalysts for oxygen reduction reaction (ORR) in alkaline solution. The physical properties of the AuPdNNs/C catalysts are characterized by scanning electron microscopy (SEM), high‐resolution transmission electron microscopy (HRTEM), UV‐vis absorption spectroscopy, and cyclic voltammetry (CV). Rotating disk electrode (RDE) voltammetric studies show that the Au0.8Pd0.2NNs/C (prepared using 1 mM PdCl2) has the highest ORR activity among all the AuPdNNs/C series, which is comparable to commercial Pt catalyst (E‐TEK). The ORR activity of AuPdNNs/C is presumably due to the enhanced Pd surface area and high porosity of Pd nanoshells.  相似文献   

7.
A novel carbon‐titania composite material, C/TiO2, has been prepared by growing carbon nanofibers (CNFs) on TiO2 surface via methane decomposition using Ni‐Cu as a catalyst. The C/TiO2 was used for preparing supported palladium catalyst, Pd/C/TiO2. The support and Pd/C/TiO2 catalyst were characterized by BET, SEM, XRD and TG‐DTG. Its catalytic performance was evaluated in selective hydrogenation of citral to citronellal, and compared with that of activated carbon supported Pd catalyst. It was found that the Pd/C/TiO2 catalyst contains 97% of mesopores. And it exhibited 88% of selectivity to citronellal at citral conversion of 90% in citral hydrogenation, which was much higher than that of activated carbon supported Pd catalyst. This result may be attributed to elimination of internal diffusion limitations, which were significant in activated carbon supported Pd catalyst, due to its microporous structure.  相似文献   

8.
In this paper, we present the synthesis of Au nanoparticles supported on nanosilica thiol based dendrimer, nSTDP. The catalyst was prepared by reduction of HAuCl4 with NaBH4 in the presence of nSTDP. The resulting Aunp–nSTDP materials were characterized by FT–IR and UV–vis spectroscopic methods, SEM, TEM, TGA, XPS and ICP analyses. The characterization of the catalyst showed that Au nanoparticles with the size of 2–6 nm are homogeneously distributed on the nSTDP dendrimer with a catalyst loading of about 0.19 mmol/g of catalyst. The Aunp–nSTDP catalyst was used in the oxidation of alcohols with tert–butyl hydroperoxide (TBHP) as oxidant. The influence of vital reaction parameters such as solvent, oxidant and amount of catalyst on the oxidation of alcohols was investigated. These reactions were best performed in an acetonitrile/water mixture (3:2) in the presence of 0.76 mol% of the catalyst on the basis of the Au content at 80 °C under atmospheric pressure of air to afford the desired products in high yields (80–93% for benzyl alcohols). The Aunp–nSTDP catalyst exhibited a high selectivity toward the corresponding aldehyde and ketone (up to 100%). Reusabiliy and stability tests demonstrated that the Aunp–nSTDP catalyst can be recycled with a negligible loss of its activity. Also this catalytic exhibited a good chemoselectivity in the oxidation of alcohols.  相似文献   

9.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

10.
Monodisperse bimetallic Pd–Cu nanoparticles with controllable size and composition were synthesized by a one‐step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd85–Cu15, Pd56–Cu44, and Pd39–Cu61. The nanoparticles were separated from the solution mixture by extraction with non‐polar solvents, such as n‐hexane. Monodisperse bimetallic Pd–Cu nanoparticles with narrow size‐distribution were obtained without the need for a size‐selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as‐prepared nanoparticles were loaded onto a Vulcan XC‐72 carbon support. Supported bimetallic Pd–Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd–Cu catalyst that contained 15 % Cu, the activity was even comparable to the state‐of‐the‐art commercially available Pt/C catalysts. A STEM‐HAADF study indicated that the formation of random solid‐solution alloy structures in the bimetallic Pd85–Cu15/C catalysts played a key role in improving the electrochemical activity.  相似文献   

11.
In this work, we study the fabrication, structural characterization, and electrochemical activity of titanium‐supported binary Au? Ru catalysts for glucose oxidation. The catalysts including Au99Ru1, Au95Ru5, Au93Ru7 and Au88Ru12 were prepared by a hydrothermal method using formaldehyde as a reduction agent. The morphologies of the prepared Au? Ru catalyst structures are characterized by porous dendritic particles with roughened surfaces with nano‐sized flakes. Electrochemical catalytic activity of the binary Au? Ru catalysts towards glucose oxidation in alkaline solutions was investigated using cyclic voltammetry and chronoamperometry. All binary Au? Ru catalysts facilitate glucose oxidation at the lower potentials and deliver higher anodic oxidation currents compared to pure Au catalyst. Among them, the binary Au95Ru5 catalyst presents the most negative onset potential of ?0.872 V (vs. Ag/AgCl, 3 M KCl) for glucose oxidation in 0.1 M NaOH solution. For the Au95Ru5 catalyst, chronoamperometric data at the potential step of ?0.65 V (vs. Ag/AgCl,3 M KCl) exhibit a well linear dependence of the anodic oxidation current density on glucose concentration in the range of 0 to 15 mM glucose.  相似文献   

12.
高分散的炭载Au纳米催化剂的制备、表征和催化活性   总被引:7,自引:0,他引:7  
采用柠檬酸钠还原-胶体负载法, 制备了高分散的炭载Au纳米催化剂, 并以液相催化氧化葡萄糖为葡萄糖酸钠的反应评价了Au/C催化剂的活性. 研究结果表明, 金溶胶制备过程中柠檬酸钠的用量对粒子尺寸以及所获催化剂的催化活性有重要影响; 催化剂在多次使用之后活性的降低可能是由于在活性炭表面金粒子活性位点上形成的Auδ+-Oδ-化合态减少的缘故. 同时比较了制备的Au/C和商业Pd/C催化剂对葡萄糖的液相催化氧化反应, 证明Au/C催化剂明显优于Pd/C催化剂.  相似文献   

13.
A one‐pot method for the fast synthesis of a 3D nanochain network (NNC) of PdCu alloy without any surfactants is described. The composition of the as‐prepared PdCu alloy catalysts can be precisely controlled by changing the precursor ratio of Pd to Cu. First, the Cu content changes the electronic structure of Pd in the 3D NNC of PdCu alloy. Second, the 3D network structure offers large open pores, high surface areas, and self‐supported properties. Third, the surfactant‐free strategy results in a relatively clean surface. These factors all contribute to better electrocatalytic activity and durability towards ethanol oxidation. Moreover, the use of copper in the alloy lowers the price of the catalyst by replacing the noble metal palladium with non‐noble metal copper. The composition‐optimized Pd80Cu20 alloy in the 3D NNC catalyst shows an increased electrochemically active surface area (80.95 m2 g?1) and a 3.62‐fold enhancement of mass activity (6.16 A mg?1) over a commercial Pd/C catalyst.  相似文献   

14.
Herein, we report a facile surfactant‐assisted solvothermal synthetic method to prepare nearly monodisperse spherical CeO2 nanocrystals. A good control of the size of CeO2 nanocrystals in the range of 100–500 nm was achieved by simply varying the synthetic parameters such as reaction time, volume ratio of ethanol to water (R), molar ratio of PVP, and concentration of Ce(NO3)3?6 H2O in solution. A possible mechanism for the growth of spherical CeO2 nanocrystals is proposed. The obtained CeO2 nanocrystals with a surface area of up to 47 m2g?1 were then employed as a catalyst support. By loading Au‐Pd nanoparticles (about 3 wt. %) onto the CeO2 support, an Au‐Pd/CeO2 catalyst was prepared that exhibited high catalytic activity for HCHO oxidation. At the low temperature of 50 °C, the percentage of HCHO conversion was 100 %, suggesting potential applications in preferential oxidation and other catalytic reactions. These Au‐Pd/CeO2 catalysts may also find applications in indoor formaldehyde decontamination and industrial catalysis. The facile solvothermal method can be extended to the preparation of other metal oxide nanocrystals and provides guidance for size‐ and morphology‐controlled synthesis.  相似文献   

15.
In this study, magnetic nitrogen‐doped carbon (MNC) was fabricated through facile carbonization and activation of natural silk cocoons containing nitrogen and then combined with Fe3O4 nanoparticles to create a good support material for palladium. Palladium immobilization on the support resulted in the formation of magnetic nitrogen‐doped carbon‐Pd (MNC‐Pd). The prepared heterogeneous catalyst was well characterized using FT‐IR, TGA, EDX, FE‐SEM, XRD, VSM, and ICP‐OES techniques. Thereafter, the synthesis of biaryl compounds was conducted to investigate the catalyst performance via the reaction of aryl halides and phenylboronic acid. Further, the catalyst could be used and recycled for six consecutive runs without any significant loss in its activity.  相似文献   

16.
A non‐phosgene route synthesis of carbamate was carried out in a continuous fixed‐bed reactor through oxidative carbonylation of aniline using palladium catalysts and sodium iodide as promoter. The activity, selectivity and stability of both carbon and alumina‐supported palladium catalysts were evaluated. It was found that the alumina‐supported catalyst system exhibited a higher activity and selectivity than that of the carbon‐supported system, and an average aniline conversion of 95.6% and carbamate selectivity of 74.6% were achieved for the Se‐Pd/Al2O3 catalyst after 91 h on stream. Reclamation analysis of the spent Pd/C catalyst suggested that the deactivation was mainly due to the leaching and sintering of palladium metal and the accumulation of insoluble chemicals on catalyst support also aggravated the decline of catalyst activity. When small amounts of selenium were added to the Pd/Al2O3 catalyst, its activity, selectivity and stability were significantly improved which indicated that a promotional effect existed for carbamate formation on a Pd‐Se catalyst system.  相似文献   

17.
Noble-metal-based catalysts supported on silica (Au/SiO2, Pd/SiO2 and Au–Pd/SiO2) were prepared by the sol–gel method and were evaluated in the steam reforming of ethanol for hydrogen production. The catalysts were characterized by N2 physisorption (BET/BJH methods), X-ray diffraction, temperature programmed reduction analysis, H2 chemisorption, atomic absorption spectrophotometry and Raman spectroscopy. The structural characterization of the Au- and Pd-containing catalysts after calcination showed that the solids are predominantly formed by Au0, Pd0 and PdO species and was observed that the metallic Pd dispersion diminished in the presence of Au0. The results revealed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. The Pd/SiO2 catalyst showed the best performance among the catalysts tested at the highest reaction temperature (600 °C) due to the more effective action of the metallic active phase, which covers a greater area in this sample. At this same reaction temperature, the Au–Pd/SiO2 catalyst showed a significant deactivation, probably due to the lower Pd dispersion presented by this catalyst.  相似文献   

18.
New graphene oxide (GO)‐based hydrogels that contain vitamin B2/B12 and vitamin C (ascorbic acid) have been synthesized in water (at neutral pH value). These gel‐based soft materials have been used to synthesize various metal nanoparticles, including Au, Ag, and Pd nanoparticles, as well as nanoparticle‐containing reduced graphene oxide (RGO)‐based nanohybrid systems. This result indicates that GO‐based gels can be used as versatile reactors for the synthesis of different nanomaterials and hybrid systems on the nanoscale. Moreover, the RGO‐based nanohybrid hydrogel with Pd nanoparticles was used as an efficient catalyst for C? C bond‐formation reactions with good yields and showed high recyclability in Suzuki–Miyaura coupling reactions.  相似文献   

19.
The catalytic oxidation of alcohols with molecular oxygen on supported nanometallic catalysts represents one of the green methods in a crucial process for the synthesis of fine chemicals. We have designed an experiment using physically mixed Au/AC and Pd/AC (AC=activated carbon) as the catalyst in the liquid‐phase oxidation of benzyl alcohol by aerobic oxygen. The evolution of the physically mixed catalyst structures at different stages in the catalytic reaction was investigated by aberration‐corrected high‐resolution transmission electron microscopy and spatially resolved element mapping techniques at the nanometre scale, and they were also compared with the structure of the bimetallic alloy. For the first time we show the formation of surface Au–Pd bimetallic sites by reprecipitation of Pd onto Au nanoparticles. Negligible Au leaching was observed. The in situ structural evolution can be directly correlated to the great enhancement of the catalyst activity. Moreover, we distinguish the different behaviours of Au and Pd, thus suggesting an oxygen differentiating mechanism for Au and Pd sites. The findings are of great importance to both the understanding of the structure–activity correlation and the design of highly active catalysts in green chemistry.  相似文献   

20.
Nanocatalysts Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 supported on multi‐walled carbon nanotubes (MWCNTs) were successively synthesized by the chemical reduction method in the glycol‐water mixture solvent. Transmission electron microscopy results show that the prepared Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 nanoparticles are uniformly dispersed on the surface of MWCNTs. The average particle sizes of the nanocatalysts are 3.5–3.8 nm. Electroactivity of the prepared catalysts towards oxidation of ethanol, 1‐propanol, 2‐propanol, n‐butanol, iso‐butanol and sec‐butanol (C2? C4 alcohols) in alkaline medium was studied by cyclic voltammetry and chronoamperometry. The current density obtained for the electrooxidation of C2? C4 alcohols depends on the catalysts and the various structures of the alcohols. Addition of Sn or/and Ni to Pd nanoparticles enhances the electroactivity of the Pd/MWCNT catalyst. Furthermore, the ternary Pd8Sn1Ni1/MWCNT catalyst presents the highest electroactivity for the oxidation of C2? C4 alcohols among the prepared catalysts. Electrocatalytic activity order among propanol isomers and butanol isomers is as follows respectively: 1‐propanol > 2‐propanol, and n‐butanol > iso‐butanol > sec‐butanol > tert‐butanol. This is consistent with the Mulliken charge value of the carbon atom bonded with hydroxyl group in the corresponding alcohol molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号