首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pyrazolone derivatives (Z)-4-((2-hydroxyethylimino)(p-tolyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one [PMP-EA] (1), (Z)-1-(3-chlorophenyl)-4-((2-hydroxyethylimino)(p-tolyl)methyl)-3-methyl-1H-pyrazol-5(4H)-one [MCPMP-EA] (2), and (Z)-4-((2-hydroxyethylimino)(p-tolyl)methyl)-3-methyl-1-p-tolyl-1H-pyrazol-5(4H)-one [PTPMP-EA] (3) have been synthesized and characterized. The molecular geometry of 2 has been determined by single-crystal X-ray study. These ligands exist in amine-one tautomeric form in the solid state. Three copper(II) complexes, [Cu(PMP-EA)(H2O)2] (4), [Cu(MCPMP-EA)(H2O)2] (5), and [Cu(PTPMP-EA)(H2O)2] (6), respectively, have been synthesized using these ligands and characterized by microanalytical data, molar conductivity, IR, UV–Visible, FAB-Mass, magnetic measurement, TG-DTA studies, and ESR spectral studies; Cu(II) is five-coordinated with [ML(H2O)2] composition. The interaction of the complexes with CT-DNA (calfthymus) was investigated using different methods. The results suggest that the copper complexes bind to DNA via intercalation and can quench the fluorescence intensity of EB bound to DNA.  相似文献   

2.
Sulfonamide‐derived new ligands, 4‐({[(E)‐(5‐bromo‐2‐hydroxyphenyl)methylidene]‐amino}methyl)benzenesulfonamide and 4‐bromo‐2‐((E)‐{4‐[(3,4‐dimethylisoxazol‐5‐yl)sulfamoyl]phenyl}iminiomethyl)phenolate and their transition metal [cobalt(II), copper(II), nickel(II) and zinc(II)] complexes were synthesized and characterized. The nature of bonding and structure of all the synthesized compounds were deduced from physical (magnetic susceptibility and conductivity measurements), spectral (IR, 1H and 13C NMR, electronic, mass spectrometry) and analytical (CHN analysis) data. The structure of the ligand, 4‐bromo‐2‐((E)‐{4‐[(3,4‐dimethylisoxazol‐5‐yl)sulfamoyl]phenyl} iminiomethyl)phenolate was also determined by X‐ray diffraction method. An octahedral geometry was suggested for all the complexes. In order to evaluate the biological activity of the ligands and the effect of metals, the ligands and their metal complexes were screened for in vitro antibacterial, antifungal and cytotoxic activity. The results of these studies revealed that all compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against various fungal strains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Four different mononuclear palladium(II) complexes of 3‐acetyl‐8‐methoxycoumarin Schiff bases were synthesized and characterized by spectrochemical techniques. Further analysis through X‐ray crystallography confirmed the structures of the complexes. Their interactive ability with Calf Thymus DNA and protein (Bovine Serum Albumin and Human Serum Albumin) were investigated by means of absorption and emission methods. The intercalative mode of binding with DNA was supported by EB displacement studies and viscosity measurements. Configurational changes that occurred in the proteins have been analysed with the help of 3D fluorescence studies. The complexes were shown to have good antimicrobial activity against the tested bacterial and fungal pathogens. In addition, antiproliferative activity of the complexes was evaluated on A549 and MCF‐7 cell lines and the complexes were comparatively more active than the standard drug cisplatin. Among the compounds, complex 3 was the most effective against MCF‐7 (IC50 value of 5.20 ± 0.15 μM) and A549 (5.09 ± 0.13 μM) compared with the other complexes 1 (6.48 ± 0.17 μM; 5.98 ± 0.09 μM), 2 (5.53 ± 0.12 μM; 5.85 ± 0.11 μM), 4 (6.73 ± 0.19 μM; 6.63 ± 0.16 μM) and cisplatin (16.79 ± 0.08 μM; 15.10 ± 0.05 μM) respectively. LDH and NO release assays confirmed the cytotoxic potential of the synthesized complexes.  相似文献   

4.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Reactions of hydrated zinc(II) trifluoroacetate and sodium azide with two tridentate Schiff bases HL1 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-chlorophenol) and HL2 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-bromophenol) under the same reaction conditions yielded two dinuclear isostructural zinc(II) complexes, [Zn(L1)(N3)]2 (1) and [Zn(L2)(N3)]2 (2), respectively. The complexes were characterized systematically by elemental analysis, UV–Vis, FT-IR, and 1H NMR spectroscopic methods. Single-crystal X-ray diffraction studies reveal that each of the dinuclear complexes consists of two crystallographically independent zinc(II) ions connected by double bridging phenoxides. All zinc(II) ions in 1 and 2 are surrounded by similar donor sets and display distorted square–pyramidal coordination geometries. The ligands and complexes reveal intraligand 1(π → π*) flourescence. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates their potential to serve as photoactive materials.  相似文献   

6.
A series of triazole‐derived Schiff bases (L1–L5) and their oxovanadium(IV) complexes have been synthesized. The chemical structures of Schiff bases were characterized by their analytical (CHN analysis) and spectral (IR, 1H and 13C NMR and mass spectrometry) data, and oxovanadium(IV) complexes were elucidated by their physical (magnetic susceptibility and conductivity), analytical (CHN analysis), conductance measurements and electronic spectral data. The molar conductivity data indicate the oxovanadium(IV) complexes to be non‐electrolyte. The Schiff bases act as bidentate and coordinate with the oxovanadium(IV)‐forming stoichiometry of a complex as [M (L‐H)2] where M = VO and L = L1–L5 in a square‐pyramidal geometry. The agar well diffusion method was used for in vitro antibacterial screening against E. coli, S. flexenari, P. aeruginosa, S. typhi, S. aureus and B. subtilis and for antifungal activity against T. longifucus, C. albican, A. flavus, M. canis, F. solani and C. glaberata. The biological activity data show the oxovanadium(IV) complexes to be more antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal strains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Indium(III) chloride tetrahydrate and Schiff-base ligands derived from adamantaneamine and 3-/4-methoxysalicylaldehyde gave two complexes, C22H32Cl3InN2O3 (1) and C36H44Cl3InN2O4 (2), respectively. The complexes were characterized by IR, 1H NMR, elemental analysis, molar conductance, thermal analysis, and single-crystal X-ray diffraction. Complex 1 crystallizes in the monoclinic system, P21/n space group with the asymmetric unit consisting of one indium(III), one N-(3-methoxysalicylidene)-aminoadamantane (L1), three chlorides and one N,N-dimethylformamide molecule. The indium is six-coordinate with reversed triangular-prism geometry via three oxygens and three chlorides. Complex 2 crystallizes in the triclinic system, P 1 space group; the asymmetric unit consists of one indium(III), two N-(4methoxysalicylidene)-aminoadamantane (L2), and three chlorides. The indium is five-coordinate with distorted trigonal-bipyramidal geometry via two oxygens and three chlorides. Antibacterial activities of the complexes have been investigated against Escherichia coli and Staphylococcus aureus.  相似文献   

8.
A pair of novel azide‐bridged polynuclear copper(II) complexes, [CuL(μ1,1‐N3)]n ( 1 ) and [Cu4L2(CH3COO)21,1‐N3)4] ( 2 ) (L = 4‐chloro‐2‐[(2‐dimethylaminoethylimino)methyl]phenolate), have been obtained from the same Schiff base ligand and an identical synthetic procedure using anions of the metal salts as the only independent variable. Complex 1 was synthesized using copper(II) nitrate, while complex 2 was synthesized using the copper(II) acetate as the salt. Both of the complexes show novel supramolecular structures in their crystals as elucidated by X‐ray analyses. The polynuclear complex 1 contains [CuL(μ1,1‐N3)]n units as the building blocks, crystallizes in the Pbca space group. The tetra‐nuclear complex 2 contains [Cu4L2(CH3COO)21,1‐N3)4] units as the building blocks, crystallizes in the space group.  相似文献   

9.
Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensingo- hydroxyacetophenone with aniline,o- orp-methylaniline have been carried out. The products were characterized by analytical, IR, electronic and1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

10.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

11.
Reaction of N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide), C20H18F2N4O2, ( LF ), with zinc chloride and mercury(II) chloride produced different types and shapes of neutral coordination complexes, namely, dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ2N,O]zinc(II), [ZnCl2(C20H18F2N4O2)], ( 1 ), and dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ4O,N,N′,O′]mercury(II), [HgCl2(C20H18F2N4O2)], ( 2 ). The organic ligand and its metal complexes are characterized using various techniques: IR, UV–Vis and nuclear magnetic resonance (NMR) spectroscopies, in addition to powder X‐ray diffraction (PXRD), single‐crystal X‐ray crystallography and microelemental analysis. Depending upon the data from these analyses and measurements, a typical tetrahedral geometry was confirmed for zinc complex ( 1 ), in which the ZnII atom is located outside the bis(benzhydrazone) core. The HgII atom in ( 2 ) is found within the core and has a common octahedral structure. The in vitro antibacterial activities of the prepared compounds were evaluated against two different bacterial strains, i.e. gram positive Bacillus subtilis and gram negative Pseudomonas aeruginosa bacteria. The prepared compounds exhibited differentiated growth‐inhibitory activities against these two bacterial strains based on the difference in their lipophilic nature and structural features.  相似文献   

12.
The effect of the nature of organic ligands and complex formation on the photoluminescent characteristics (relative quantum yield, excited-state lifetime) and thermal stability of tetradentate Schiff bases (H2L), derivatives of salicylaldehyde (H2(SAL)1, H2(SAL)2), o-vanillin (H2(MO)1, H2(MO)2) with ethylenediamine and o-phenylenediamine, and their zinc(II) complexes was studied. Zinc(II) complexes were synthesized by the reaction of H2L with Zn(AcO)2·2H2O in MeOH at room temperature or under reflux. In the case of H2L = H2(SAL)2, H2(MO)1, H2(MO)2, complexes of the composition ZnL·H2O were isolated irrespective of the temperature. For H2L = H2(SAL)1, the reaction results in Zn(SAL)1·H2O at room temperature and in anhydrous dimeric complex [Zn(SAL)1]2 under reflux. Density functional calculations of H2L and ZnL confirmed that (1) luminescence of these compounds is due to the π-π* transition between orbitals of the organic ligand and (2) enhancement of conjugation of the chain and introduction of electron-donating substituents lead to a decrease of the energy gap and, there-fore, to a bathochromic shift of the emission maximum. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1846–1855, September, 2008.  相似文献   

13.
Fifteen new ferrocene derivatives containing 1H‐1,2,4‐triazole moiety were synthesized in various yields by the condensation of ferrocenecarboxaldehyde with 1‐aryl‐3‐(1H‐1,2,4‐triazo‐1‐yl)‐propen‐1‐ones in toluene. Their structures have been confirmed by 1H NMR, IR, MS and elemental analysis. In addition, the crystal structure of 4l was determined. The antifungal and plant growth regulatory activities of the title compounds are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
以醋酸为催化剂,用3-氨基-1H-1, 2, 4-三唑与取代苯甲醛反应合成了8个3-氨基-1H-1, 2, 4-三唑类席夫碱,化合物结构经1H NMR,IR和元素分析证实,并对其进行了生物活性测试,初步生物活性结果表明此类化合物具有良好的杀菌活性。  相似文献   

15.
Three asymmetric Schiff-base tetradentate diimines H2L1, H2L2, and H2L3 [(2-OH)C6H4N=CHC6H42-N=CHC6H3(2-OH)(5-X), X?=?H, CH3, Cl respectively] have been synthesized by a two step process. The reaction of 2-hydroxy aniline with 2-nitro-benzaldehyde in EtOH gave the starting Schiff base, 2-hydroxy-N-(2-nitrobenzylidene)aniline (SB-NO2), which was reduced into the amino derivative (SB-NH2) in solution. Reacting SB-NH2 with 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde and 2-hydroxy-5-chlorobenzaldehyde gave the three new ligands H2L1, H2L2, and H2L3 respectively. Their dimeric, binuclear metal complexes with Ni(II) and Fe(III) have also been synthesized. The ligands and their complexes were characterized by elemental analyses, LC–MS, IR, electronic, 1H and 13C-NMR spectra, TGA, conductivity and magnetic measurements. All of the spectroscopic, analytical and other data indicate octahedral geometry M2L2(H2O)X2 (M: Ni,Co;X: Cl or H2O), except for NiL2 which is monomeric. Antimicrobial activities of the ligands and the complexes were evaluated against five bacteria. While the ligands and the Ni complexes are inactive towards Pseudomonas aeruginosa and Staphylococcus aureus, Fe complexes are active; only Fe complexes are inactive against Escherichia coli. All of the compounds have antimicrobial activities against Bacillus subtilis, and Yersinia enterecolitica.  相似文献   

16.
Four novel ON donor Schiff bases (E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol (HL1),(E)-3-((4-(4-biphenyloxy)phenyliminomethyl)benzene-1,2-diol (HL2), (E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol (HL3), (E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol (HL4) and their copper(II) complexes bis((E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L1)2) bis((E)-3-((4-(4-biphenyloxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L2)2), bis((E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L3)2), bis((E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L4)2) have been synthesized and characterized by spectroscopic (FTIR, NMR, UV–visible) and elemental analysis. The crystal structures of HL1, HL2, HL3, and HL4 have been determined, which reveal intramolecular N-H?O (HL1, HL2, HL3, and HL4) hydrogen bonds in the solid state. Keto-amine and enol-imine tautomerism is exhibited by the Schiff bases in solid and solution states. The Schiff bases and their copper(II) complexes have been screened for their biological activities. In antimicrobial assays (antibacterial and antifungal), HL4 showed promising results against all strains through dual inhibition property while the rest of the compounds showed activity against selective strains. On the other hand, in cytotoxic, DPPH, and inhibition of hydroxyl (OH) free radical-induced DNA damage assays, the results were found significantly correlated with each other, i.e. the ligands HL1 and HL2 showed moderate activity while their complexes Cu(L1)2 and Cu(L2)2 exhibited prominent increase in activity. As the results of these assays are supporting each other, it represents the strong positive correlation and antioxidant nature of investigated compounds.  相似文献   

17.
By condensation of rimantadine and substituted salicylaldehyde, three new Schiff bases, HL1, HL2 and HL3, were synthesized. Then, a mixture of one of the new ligands and cobalt(II) chloride hexahydrate in ethanol led to 1, 2, and 3, respectively. These complexes were characterized by melting point, elemental analysis, infrared spectra, molar conductance, thermal analysis, and single-crystal X-ray diffraction analysis. X-ray diffraction analysis reveals that 1 crystallizes in the orthorhombic system, Pbcn space group; each asymmetric unit consists of one cobalt(II) ion, two deprotonated ligands, and one lattice water. The central cobalt is four coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligand, forming a distorted tetrahedral geometry. Complexes 2 and 3 crystallize in the monoclinic system, P21/c space group; each asymmetric unit consists of one cobalt(II), two corresponding deprotonated ligands, one lattice water, and one methanol. The central cobalt is also four-coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligand, forming a distorted tetrahedral geometry.  相似文献   

18.
Two series of zinc(II) complexes of two Schiff bases (H2L1 and H2L2) formulated as [Zn(HL1/HL2)]ClO4 (1a and 1b) and [Zn(L1/L2)] (2a and 2b), where H2L1 = 1,8-bis(salicylideneamino)-3,6-dithiaoctane and H2L2 = 1,9-bis(salicylideneamino)-3,7-dithianonane, have been prepared and isolated in pure form by changing the chemical environment. Elemental, spectral, and other physicochemical results characterize the complexes. A single crystal X-ray diffraction study confirms the structure of [Zn(HL1)]ClO4 (1a). In 1a, zinc(II) has a distorted octahedral environment with a ZnO2N2S2 chromophore.  相似文献   

19.
A new series of antibacterial and antifungal amino acid derived Schiff bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, IR and electronic spectral measurements. The spectral data indicated the Schiff base ligands ( L 1– L 5) derived by condensation of salicylaldehyde with glycine, alanine, phenylalanine, methionine and cysteine, to act as tridentate towards divalent metal ions (cobalt, copper, nickel and zinc) via the azomethine‐N, deprotonated carboxyl group of the respective amino acid and deprotonated oxygen atom of salicylaldehyde by a stoichiometric reaction of M: L (1:2) to form complexes of the type K2[M( L )2] [where M = Co(II), Cu(II), Ni(II) and Zn(II)]. The magnetic moments and electronic spectral data suggested that all complexes have an octahedral geometry. Elemental analyses and NMR spectral data of the ligands and their Zn (II) complexes agree with their proposed structures. The synthesized ligands, along with their metal complexes, were screened for their in‐vitro antibacterial activity against four Gram‐negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram ‐ positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in‐vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/antifungal against one or more species as compared with the uncomplexed Schiff base ligands. The brine shrimp bioassay was also carried out to study their in‐vitro cytotoxic properties. Only three compounds ( 2, 11 and 17 ) displayed potent cytotoxic activity as LD50 = 8.196 × 10?4, 7.315 × 10?4 and 5.599 × 10?4 M /ml respectively, against Artemia salina. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Newly synthesized mononuclear copper(II) and zinc(II) complexes containing an azo Schiff base ligand (L), prepared by condensation of 2-hydroxy-5-(o-tolyldiazenyl)benzaldehyde and propylamine, were obtained and then characterized using infrared and NMR spectroscopies, mass spectrometry and X-ray diffraction. Ligand L behaves as a bidentate chelate by coordinating through deprotonated phenolic oxygen and azomethine nitrogen. The copper and zinc complexes crystallize in triclinic and orthorhombic systems, respectively, with space groups P1 and Pca21. In these complexes, the Cu(II) ion is in a square planar geometry while the Zn(II) ion is in a distorted tetrahedral environment. The photochemical behaviors of ligand L, [Cu(L)2] and [Zn(L)2] were investigated. The azo group in L underwent reversible transcis isomerization under UV and visible irradiation. This process was inhibited for the complexes. In addition, ligand L and its copper and zinc complexes were assessed for their in vitro antibacterial activities against four pathogenic strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号