首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fuchs-Kliewer phonon spectrum of single crystal Co3O4(110) has been analyzed by high resolution electron energy loss spectroscopy (HREELS) and the four fundamental phonon losses have been identified at 26.8, 47.5, 71.1 and 84.7 meV (216, 383, 573 and 683 cm−1). This is the first HREELS study reported for an intrinsic spinel single-crystal surface with primary focus on the Fuchs-Kliewer phonon structure. The Co3O4 crystal is first characterized by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED), which establish the composition, cleanliness, and order of the (110) surface. Electron scattering is then used to obtain a series of well-resolved Fuchs-Kliewer phonon spectra over 2.25-14.25 eV incident electron energy range. The variation in phonon intensity with primary beam energy is shown to agree with that predicted by dielectric theory.  相似文献   

2.
Auger lineshapes of the Ge M1M4,5V and M3M4,5V and Se M1M4,5V transitions in GeS (001) and GeSe (001) are measured and compared to XPS valence band spectra. Distortions in both types of spectra due to inelastic scattering, analyzer and source broadening, and core level lifetime broadening are removed by deconvolution techniques. The valence band consists of three main peaks at ?2 eV, ?8 eV, and ?13 eV. There is excellent agreement of peak positions in AES and XPS spectra. The Auger lineshapes can be interpreted in terms of site-specific densities of states. They indicate that the states at ~?8 eV and at ~?13 eV are associated with the cation and anion sites respectively. The bonding p-like states at the top of the valence band have both cation and anion character. The Auger lineshapes indicate that the states closest to the valence band maximum are preferentially associated with Ge.  相似文献   

3.
Thermal treatment in UHV of clean V2O5 single crystals results in homogeneous oxygen loss, involving a rate-limiting surface reaction. Depending upon the pretreatment, aircleaved samples transform topotactically into V6O13, or into what we call a phase Q of probable composition V4O9 or V6O13.5. Low energy electron bombardment of clean UHV-cleaved V2O5(010) surfaces produces the transition V2O5 → V6O13 at room temperature. This effect is attributed to electron beam stimulated reactions. The influence on the transition of carbon-containing impurities is discussed. The nucleation of V6O13 on V2O5 is explained by a model based on a surface reaction, the rate of which is enhanced by the interaction with contaminating molecules and low energy electron bombardment. The presence of shear planes at the boundary between V2O5 and the V6O13 nuclei locally enhances the oxygen loss rate and allows the V6O13 nuclei to grow into the bulk.The enhanced mobility of the oxygen at these boundaries is thought to influence favorably the oxidation-regeneration rate of the V2O5-catalyst.  相似文献   

4.
P2S5/NH4OH处理GaAs(100)表面的电子能谱研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用俄歇电子能谱(AES)和X射线光电子能谱(XPS)研究了P2S5/NH4OH钝化液处理的GaAs(100)表面的微观特性。AES测量表明,在钝化膜和GaAs衬底之间的界面处无O组分,只有P和S组分。XPS测量分析指出,经过P2S5/NH4OH溶液处理后,GaAs表面处Ga2O3和As2O3关键词:  相似文献   

5.
Density functional theory cluster studies and angular resolved photoemission (ARUPS) measurements were performed to examine properties of differently coordinated surface oxygens at the V2O5(010) surface. Calculations on embedded clusters as large as V16O49H18 confirm the ionic character of the oxide. The computed width of the O 2sp dominated valence band region of V2O5 and the work function value of V2O5 (010) are in good agreement with the present photoemission data for freshly cleaved V2O5(010) samples. Cluster derived total and partial densities of states (DOS, PDOS) can be used to identify differently coordinated surface oxygens. The PDOS referring to terminal (vanadyl) oxygens is localized near the center of the valence band whereas the PDOS’s of the different bridging oxygens yield a broad distribution covering the full energy range of the valence bands. The shape of the experimental ARUPS curves for V2O5(010) is well reproduced by the cluster DOS. Thus, the most prominent central peak in the experimental spectrum can be assigned to emission from terminal oxygen while the peripheral peaks at the top and bottom of the valence energy region are characterized as mixtures of vanadium with bridging oxygen induced contributions. This interpretation forms a basis to get insight into microscopic features at the real V2O5(010) surface such as imperfections and adsorbate binding. The present study suggests that the different O 2sp derived peaks observed in the photoemission experiment may be taken as monitors of the differently coordinated oxygens at the oxide surface and can be used to study details of catalytic surface reactions in which these oxygens participate.  相似文献   

6.
The electronic structure and vibrational spectrum of the C60 film condensed on a 2H- MoS2(0001) surface have been investigated by X-ray photoelectron spectroscopy (XPS), ul-traviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES) and infrared high-resolution electron-energy-loss spectroscopy (HREELS). AES analysis showed that at low energy side of the main transition, C60 contains a total of three peaks just like that of graphite. However, the energy position of the KLL main Auger transition of C60 looks like that of diamond, indicating that the hybridization of the carbon atoms in C60 is not strictly in sp2- bonded state but that the curvature of the molecular surface introduces some sp2pz- bonded character into the molecular orbitals. XPS showed that the C 1s binding energy in C60 was 285.0eV, and its main line was very symmetric and offered no indication of more than a single carbon species. In UPS measurement the valence band spectrum of C60 within 10eV below the Fermi level (EF) shows a very distinct five-band structure that character-izes the electronic structure of the C60 molecule. HREEL results showed that the spectrum obtained from the C60 film has very rich vibrational structure. At least, four distinct main loss peaks can be identified below 200 meV. The most intense loss was recorded at 66 meV, and relatively less intense losses were recorded at 95, 164 and 197meV at a primary energy of electron beam EP = 2.0eV. The other energy-loss peaks at 46, 136, 157 and 186meV in HREEL spectrum are rather weak. These results have been compared to infrared spectrum data of the crystalline solid C60 taken from recent literatures.  相似文献   

7.
We have investigated segregation of copper at the surface of V2O5 films deposited onto Cu substrate by employing surface analysis techniques. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) confirmed that the Cu is segregated at the surface and its chemical state is Cu2O. According to secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS), the Cu concentration inside the deposited V2O5 layer is low. Ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling spectroscopy (STS) revealed the segregation alters the surface local density of states. Surface analysis of deposited samples in ultra high vacuum (UHV) condition verified that the segregation occurs during the deposition. We have extended kinetic tight binding Ising model (KTBIM) to explain the surface segregation during the deposition. Simulation data approve the possibility of surface segregation during room temperature deposition. These results point out that on pure Cu substrate, oxidation occurs during the segregation and low surface energy of Cu2O is the original cause of the segregation.  相似文献   

8.
The initial interaction between an O2 molecular beam and a cleaned Fe(110) surface has been studied by a combination of Auger electron spectrometric (AES) and mass spectrometric techniques. The incident molecular beam intensity was calibrated using a stagnation detector, and the initial sticking coefficient for chemisorption was determined by mass spectrometric measurement of the transient in molecular scattering behavior observed when the cleaned surface was exposed to the molecular beam. This permitted an absolute calibration of the AES system for oxygen, and allowed comparison of the kinetic measurements of the oxygen adsorption process by the two techniques. Results indicate that the initial sticking coefficient is 0.2 ± 0.01. Oxygen is initially chemisorbed up to a coverage of 1.6 ± 0.16 × 1015 cm?2, by a process following Langmuir kinetics. Beyond this point AES studies indicate a slower rate of oxygen uptake which is independent of gas-phase oxygen pressure. The mass spectrometric studies further indicate that for a cleaned, annealed surface those oxygen molecules which are not chemisorbed are scattered in a non-diffuse manner.  相似文献   

9.
The (010) surface of single crystal MoO3 has been prepared and examined using LEED, XPS, UPS, and ELS. Three methods yield the stoichiometric surface: scraping in UHV and annealing, ion etching followed by reoxidation (770 K, 102 Pa O2), or oxygen treatment to remove carbon contamination. LEED shows the surface periodicity is the same as that of the bulk (010). The MoO3 valence band is 7 eV wide with density of states maxima at 1.5, 3.6, and 5.6 eV below the top of the valence band. Heating MoO3 in vacuum reduces the surface region. XPS indicates the O/Mo atomic ratio decreases to 2.85 ± 0.12 on heating to 600 K. Ar ion bombardment disorders the surface and reduces the surface O/Mo atomic ratio to 1.6. Annealing of reduced surfaces at > 770 K incompletely reoxidizes them by diffusion of oxygen from the bulk. UPS of reduced and annealed MoO3 exhibits two new emission features in the bandgap at 0.9 and 2.0 eV above the top of the valence band. These features originate from Mo derived states of a defect involving two or more Mo atoms, such as crystallographic shear planes. Because of the insulating nature of MoO3, surface charging and electron beam induced damage were substantial hindrances to electron spectroscopic examination.  相似文献   

10.
The photoelectron spectra and electron energy loss spectra in reflection geometry have been measured for the clean (010) surface of Na x V2O5 compounds with x = 0.23, 0.28 and 0.33. The investigations made it possible to reveal some specific features of the electronic structure of such compounds. Ionization parameters of trinitrotoluene molecules have been measured at the surface of polycrystalline Na0.33V2O5 and the (010) surface of the single crystals Na0.28V2O5 and Na0.33V2O5. The results of investigations can be successfully used in a construction of the model of electronic structure of alkaline oxide bronzes and also in the development of materials for selective surface ionization sources of organic nitro-compounds.  相似文献   

11.
A theoretical model is proposed on how a Si dangling bond associated with an oxygen vacancy on a SiO2 surface (Es′ center) should be observed by Auger electron spectroscopy (AES). The Auger electron distribution NA(E) for the L23VV transition band is calculated for a stoichiometric SiO2 surface, and for a SiOx surface containing Si-(e?O3) coordinations. The latter is characterized by an additional L23VD transition band, where D is the energy level of the unpaired electron e?. The theoretical NA(E) spectra are compared with experimental N(E) spectra for a pristine, and for an electron radiation damaged quartz surface. Agreement with the theoretical model is obtained if D is assumed to lie ≈2 eV below the conduction band edge. This result shows that AES is uniquely useful in revealing the absolute energy level of localized, occupied surface defect states. As the L23VD transition band (main peak at 86 eV) cannot unambiguously be distinguished from a SiSi4 coordination L23VV spectrum (main peak at 88 eV), supporting evidence is presented as to why we exclude a SiSi4 coordination for our particular experimental example. Application of the Si-(e?O3) model to the interpretation of SiO2Si interface Auger spectra is also discussed.  相似文献   

12.
Cathodoluminescent ageing characteristics of SrGa2S4:Ce3+ under prolonged electron beam bombardment was studied and the data are presented. The cathodoluminescent intensity with an increasing Coulomb loading was observed to degrade under different primary electron beam voltages. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to monitor the surface chemical changes during electron beam bombardment and after the degradation process. Auger peak to peak heights monitored during the ageing process suggest a loss in S and C and an initial increase in oxygen concentration on the surface. XPS results indicate the formation of a SrO overlayer due to electron stimulated surface chemical reactions (ESSCRs).  相似文献   

13.
Auger and direct electron spectra from Zn, ZnO, Ga and Ga2O3 have been studied with X-ray photoelectron spectroscopy (ESCA). The chemical shift between zinc electron binding energies in Zn and ZnO is very small, whereas the zinc Auger electron signals are separated by 4.3 eV. In gallium, the oxide and metal signals are separated by 1.9 eV, but the Auger electron energy shift is three times as large. Thus the Auger signals are more sensitive to the chemical environment than the direct electron signals, which is the same relation as earlier observed for copper and copper oxides.  相似文献   

14.
We have measured the electron energy loss spectra of Ca2V2O7 in the reflexion mode, at incident energies between 200 and 2400 eV, and the X-ray photoelectron spectra excited by Al K α radiation. The abundant loss structures observed can be correlated with the possible interband transitions, collective oscillations, and excitation of O2s and V3p electrons within the V2O74- ion. The gap width and molecular orbital (MO) spread (or splitting) is about l eV larger in the V2O74- ion than in its component VO43- ion. Excitation of O2s states, which may occur together with some MO over-gap transitions, displaces the collective oscillations about 7 eV towards lower energies. Deeper V3p electrons are excited with a maximum energy loss some 7 eV above their binding energy. Cross transitions from Ca3p levels into some empty states of the V2O74- ion, or direct transitions to available states of the Ca2+ ion could not be unambiguously identified. The energy dependence of the excitation cross section and of the electron penetration depth results in a significant variation of the relative intensity of various losses over the investigated energy range.  相似文献   

15.
The results of investigation of x-rayVK- andVL-emission spectra orientation dependence for V2O5-single crystals are reported. The applicability of different options of electronic structure cluster calculations for the interpretation of x-rayVK-emission bands anisotropy in V2O5-single crystal is discussed.  相似文献   

16.
The self-deconvolution of L23VV Auger spectra of SiO2 and Al2O3 has been carried out. The transition density functions obtained are compared with the local density of states (LDOS) of the valence band near the surface, as given by other techniques (XPS, UPS, XES) and also by theory. A fair agreement in the number and peak positions of valence band is produced. These compounds with MgO constitute an oxide series of increasing ionicity and the effects of initial hole localization in the transition density function are discussed.  相似文献   

17.
AES is used to determine the initial spectrum of a vacuum-broken SiO2 surface and to follow its dissociation under the electron beam probe. Both Auger peaks heights and energies are affected by the irradiation. The change in stoichiometry is accompanied by a decrease of the surface charge by 5–8 V. The relation between stoichiometry and charge is explained by the influence of radiation-induced defects on secondary electron emission. The reduction of SiO2 is characterized in terms of irradiation dose, dissociation cross-section and electron impact efficiency. Resistance to radiation damage is increased by surface carbon contamination. The chemical contribution to the Auger peak energy can be distinguished from the charging effect leading to a shift between element and compound of 12 eV for the silicon peak.  相似文献   

18.
The diffusion of Mg in pulsed laser deposited K(Ta0.65Nb0.35)O3 thin films epitaxially grown on (1 0 0) MgO single crystal substrate were investigated by Auger electron spectroscopy (AES). A diffusion of Mg from the substrate into the whole thickness (400 nm) of the as-deposited K(Ta0.65Nb0.35)O3 films was observed with an accumulation of Mg at the surface. Ex situ post-annealing (750 °C/2 h) has led to a homogeneous distribution of Mg in all the ferroelectric coating. This strong reaction between film and substrate promotes a doping effect, responsible for the reduction of K(Ta0.65Nb0.35)O3 dielectric losses in comparison with films grown on other substrates.  相似文献   

19.
Oxygen adsorption on a Mo(111) surface is investigated at low pressures (10?7 to 10?5 Pa) and room temperature by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS). In agreement with previous studies it is established that the surface is not reconstructed during adsorption and the oxygen forms no ordered structures. On the basis of kinetic and spectroscopy data, the formation of two adsorption states on the surface within 1 monolayer is established. The valence band of a clean surface is studied in detail. An attempt is made to ascribe the peaks obtained to definite d states. The interaction between O2 and Mo(111) is discussed in terms of the results obtained and a comparison with the O2/W(111) system is made.  相似文献   

20.
Al2O3 /TiN double and Al2O3/Cr/TiN triple coatings were produced on stainless steel substrates using plasma-detonation techniques. Investigation of the microstructure and characteristics of the coatings after the preparation was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES). The corrosion resistance of the coatings was studied in several electrolytic solutions (0.5 M H2SO4, 1 M HCl, 0.75 M NaCl) using electrochemical techniques (open circuit potential, cyclovoltammetry and potentiodynamic polarization). The obtained results showed, in most of the cases, an improvement of the corrosion resistance, except in NaCl solutions. The effect of the controlled thickness of TiN and Cr layers as well as the additional treatment with a high-current electron beam was also investigated. Nuclear reaction analysis (NRA), Rutherford backscattering spectroscopy (RBS) and scanning electron microscopy (SEM) were applied for the characterization of the samples before and after the corrosion experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号