首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Thermal decomposition of various synthetic manganese oxides (MnO, Mn3O4, Mn2O3, MnOOH) and a natural manganese dioxide (MnO2) from Gabon was studied with the help of termogravimetry in inert, oxidizing and reducing atmospheres. The compounds were characterized by XRD and electrochemical activity was tested by cyclic voltammetry using a carbon paste electrode. The natural manganese dioxide showed the best oxidizing and reducing capacity, confirmed by the lower temperatures of the transitions, the extent of the reactions and electrochemical performance in cyclic voltammograms.  相似文献   

2.
Catalysts based on Mn-substituted cordierite 2MnO · 2Al2O3 · 5SiO2 have been synthesized using different manganese oxides (MnO, Mn2O3, and MnO2) at a calcination temperature of 1100°C. The catalysts differ in their physicochemical properties, namely, phase composition (cordierite content and crystallinity), manganese oxide distribution and dispersion, texture, and activity in high-temperature ammonia oxidation. The synthesis involving MnO yields Mn-substituted cordierite with a defective structure, because greater part of the manganese cations is not incorporated in this structure and is encapsulated and the surface contains a small amount of manganese oxides. This catalyst shows the lowest ammonia oxidation activity. The catalysts prepared using Mn2O3 or MnO2 are well-crystallized Mn-substituted cordierite whose surface contains different amounts of manganese oxides differing in their particle size. They ensure a high nitrogen oxides yield in a wide temperature range. The product yield increases with an increasing surface concentration of Mn3+ cations. The highest NOx yield (about 76% at 800–850°C) is observed for the MnO2-based catalyst, whose surface contains the largest amount of manganese oxides.  相似文献   

3.
Nanorods of MnO2, Mn3O4, Mn2O3 and MnO are synthesized by hydrothermal reactions and subsequent annealing. It is shown that though different oxides experience distinct phase transition processes in the initial discharge, metallic Mn and Li2O are the end products of discharge, while MnO is the end product of recharge for all these oxides between 0.0 and 3.0 V vs. Li+/Li. Of these 4 manganese oxides, MnO is believed the most promising anode material for lithium ion batteries while MnO2 is the most promising cathode material for secondary lithium batteries.  相似文献   

4.
We have studied the correlation between the crystal structure and the catalytic activity of manganese oxides MnO, MnO2, Mn3O4, and Mn2O3 in liquid-phase oxidation of 1-octene by molecular oxygen. The catalytic activity decreases in the series of oxides with octahedral coordination environment for the manganese atoms MnO−Mn2O3−MnO2. The oxide Mn3O4 (with mixed tetrahedral and octahedral environment for the Mn atoms) catalyzes the process according to a different mechanism. L'vov Polytechnic State University, 12 S. Bandery ul., L'vov-13 290646, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 34, No. 5, pp. 324–327, September–October, 1998.  相似文献   

5.
The aim of this work was to study the thermal transitions of several manganese oxides (MnO, MnOOH, Mn2O3, Mn3O4 and MnO2) under reducing conditions. Differential scanning calorimetry (DSC) was used to analyse the transitions of some oxides into others. A comparison of the behavior of the synthetic samples with that of a natural manganese dioxide demonstrated that DSC is a quick tool for the distinction of natural manganese dioxide from synthetic γ-MnO2 from other manganese oxides. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
New methods have been adopted for the anodic deposition of the different manganese and cobalt oxides. The deposition of the diferent oxides is usually carried out from their metal salt solutions in presence of a reducing agent. The oxides deposited are as follows: Mn2O3 from manganous sulphate in presence of boric, acid and formaldehyde at pH=5.5, Mn3O4 from manganous sulphate in presence of formic acid at pH=5.0 MnO from manganous sulphate-ammonium chloride solution in presence of telluric acid, Co2O3 from cobalt chloride in presence of telluric acid and sodium fluoride, Co3O4 from cobaltite in presence of formaldehyde and potassium chloride and finally CoO from cobalt chloride in presence of alcohol. The results of chemical analysis revealed that the purity of the oxides is 99.99% and their molecular formulae are MnO1.5, MnO1.33, MnO, CoO1.5, CoO1.33 and CoO respectively.  相似文献   

7.
The thermal decompositions of pure and mixed manganese carbonate and ammonium molybdate tetrahydrate in molar ratios of 3:1, 1:1 and1:3 were studied by DTA and TG techniques. The prepared mixed solid samples were calcined in air at 500, 750 or 1000°C and then investigated by means of an XRD technique. The results revealed that manganese carbonate decomposed in the range 300–1000°C, within termediate formation of MnO2, Mn2O3 andMn3O4. Ammonium molybdate tetrahydrate first lost its water of crystallization on heating, and then decomposed, yielding water and ammonia. At 340°C,MoO3 was the final product, which melts at 790°C. The thermal treatment of the mixed solids at 500, 750 or 1000°C led to solid-solid interactions between the produced oxides, with the formation of manganese molybdate. At 1000°C, Mn2O3 and MoO3 were detected, due to the mutual stabilization effect of these oxides at this temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The research about oxygen evolution reaction (OER) has attracted extensive attention. In this work, different manganese oxides with different shell thickness were firstly grown on the surface of carbon ball template, and then the carbon ball was removed by high-temperature calcination in air to obtain hollow rambutan-like Mn2O3 and MnO2–Mn2O3 with long nanowires. The concentration of inorganic manganese salt and the reaction time has a determining influence on the morphologies of manganese oxide. The as-prepared MnO2–Mn2O3 exhibits a lower overpotential than the Mn2O3 to achieve a current density of 10 mA cm?2. The Faradic efficiency of MnO2–Mn2O3 reaches to 94.1% during the bulk electrolysis, and the morphology of MnO2–Mn2O3 remains virtually unchanged after electrolysis, indicating the outstanding stability of the as-obtained MnO2–Mn2O3.  相似文献   

9.
Workplace aerosols in a combined FeMn and SiMn alloy smelter were studied by scanning and transmission electron microscopy. Special emphasis was placed on the characterisation of individual particles with diameters below 500 nm and on identification of the different manganese phases present in the workroom air. In high-carbon FeMn production, the submicron size fraction is dominated by MnO particles forming chain-like or compact agglomerates. Minor amounts of MnO2, Mn3O4, Mn2O3 and Fe3O4 are also observed. During production of SiMn, the submicron size fraction consists predominantly of MnSi particles, but small amounts of Mn3Si, Mn6Si and Mn5Si2 are also found. Workplace aerosols from the manganese oxide refinement (MOR) process consist mostly of Mn oxides. Minor amounts of carbonaceous particles occurring as sheets, ribbons and as hollow carbon structures are observed along the whole production line. Carbonaceous particles are either amorphous or consist of poorly crystallised graphite. Particles with fibre morphology were encountered at all sampling locations but most prominently during tapping of FeMn with fibre concentrations between 0.1 and 0.7 per cm3. The pronounced differences in particle composition along the production line clearly show that workers are exposed to a variety of Mn-containing species. MnO particles have a higher solubility than MnSi particles and are thus more bioaccessible, suggesting a higher risk of adverse health effects in the FeMn production than in the SiMn production.  相似文献   

10.
Experimental data on the sol–gel synthesis of manganese oxides formed during the reduction of potassium permanganate by polyvinyl alcohol in an aqueous medium are presented. The physicochemical properties of the obtained manganese oxide systems that depend on the conditions of the synthesis are studied by means of DTA, XRD, SEM, and the low temperature adsorption–desorption of nitrogen. It is found that the obtained samples have a mesoporous structure and predominantly consist of double potassium–manganese oxide K2Mn4O8 with a tunnel structure and impurities of oxides such as α-MnO2, MnO, α-Mn2O3, and Mn5O8. It is shown that the proposed method of synthesis allows us to regulate the size and volume of mesopores and, to a lesser extent, the texture of the obtained oxides, which can be considered promising sorbents for the selective extraction of strontium and cesium ions from multicomponent aqueous solutions.  相似文献   

11.
The catalytic activity of manganese oxynitrides in the oxygen reduction reaction (ORR) was investigated in alkaline solutions to clarify the effect of the incorporated nitrogen atoms on the ORR activity. These oxynitrides, with rock‐salt‐like structures with different nitrogen contents, were synthesized by reacting MnO, Mn2O3, or MnO2 with molten NaNH2 at 240–280 °C. The anion contents and the Mn valence states were determined by combustion analysis, powder X‐ray diffraction, and X‐ray absorption near‐edge structure analysis. An increase in the nitrogen content of rock‐salt‐based manganese oxynitrides increases the valence of the manganese ions and reinforces the catalytic activity for the ORR in 1 m KOH solution. Nearly single‐electron occupancy of the antibonding eg states and highly covalent Mn?N bonding thus enhance the ORR activity of nitrogen‐rich manganese oxynitrides.  相似文献   

12.
MnOx was synthesized through the oxidation of MnCO3 and its catalytic activity in the complete oxidation of ethanol was determined. Analyses of the catalyst through in situ X-Ray Diffraction and in situ DRIFTS spectroscopy showed the presence of Mn2O3 (bixbyite) and γMnO2. The catalytic activity of MnOx depends on the mixtures of oxides and the treatment before reaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Phase equilibria were established in Ho-Mn-O and Tb-Mn-O systems at 1100°C by varying the oxygen partial pressure from −log(PO2/atm)=0-13.00, and phase diagrams for the corresponding Ln2O3-MnO-MnO2 systems at 1100°C were presented. Stable Ln2O3, MnO, Mn3O4, LnMnO3, and LnMn2O5 phases were found at 1100°C, whereas Ln2Mn2O7, Ln2MnO4, Mn2O3, and MnO2 were not found to be stable. Small nonstoichiometric ranges were found in the LnMnO3 phase, with the composition of LnMnO3 represented as functions of log(PO2/atm), and . Activities of the components in the solid solution were calculated from these equations. The composition of LnMnO3 may range from Ln2O3 rich to Ln2O3 poor, while MnO is slightly nonstoichiometric, being oxygen rich and LnMn2O5 seems to be nonstoichiometric. Lattice constants of LnMnO3 quenched at different oxygen partial pressures and of LnMn2O5 quenched in air were determined. The standard Gibbs energy changes of the reactions appearing in the phase diagrams were also calculated. The relationship between the tolerance factor of LnMnO3 and ΔG0of reaction, (1/2)Ln2O3+MnO+(1/4)O2=LnMnO3, is shown graphically.  相似文献   

14.
The preparation of MnSO4 by reacting pyrolusite at high temperatures with SO2 generated from pyrite was followed by DTA, and the process conditions were optimized to fix the minimum time and temperature of reaction required to obtain the maximum yield of pure MnSO4 from stoichiometric amounts of reactants in a natural draught of air. The presence of MnO and Fe3O4 in the reaction products, detected by DTA, indicates that the SO2 is initially oxidized to SO3 by reducing MnO2, Mn2O3 and Fe2O3 to MnO and Fe3O4. SO3 finally attacks MnO to form MnSO4. When an intimate stoichiometric blend of pyrite and pyrolusite is heated at temperatures ranging from 873 K to 973 K for 3 hrs, about 93% of the Mn is converted to ironfree MnSO4.  相似文献   

15.
The effect of aluminium oxide support on the thermal behaviour of manganese carbonate was investigated using TG, DTA, dDTA and XRD techniques. The concentrations of MnCO3 were 0.025, 0.05 and 0.125 mol/mol Al2O3. The results obtained showed that the employed support material retards the thermal decomposition of manganese carbonate due to the formation of a manganese/aluminium adduct which decomposes readily at 350°C instead of 250°C in the absence of Al2O3, to give γ-MnO2. This compound decomposed at 500°C into Mn2O3 (partridgeite). The produced Mn2O3 decomposed at 940°C yielding Mn3O4 which interacted with atmospheric oxygen during the cooling processes to give Mn2O3. However, Mn3O4 formed in the case of unloaded Mn2O3 did not interact easily with O2 and remained stable. The results might indicate the role of Al2O3 in increasing the degree of dispersion of the produced manganese oxides thus increasing their reactivity towards reoxidation by O2. The produced manganese oxide (Mn2O3) enhanced markedly the crystallization of aluminium oxide at 800°C into ?-Al2O3. Solid-solid interaction between Mn2O3 and Al2O3 occurred at 800°C giving MnAl2O4 which decomposed at 1000°C yielding Mn2O3 and α-Al2O3 (corundum).  相似文献   

16.
In order to determine the stability of some potential NOx reduction catalysts (La0.8M0.2MnO3, M  Na, K, Rb) the accelerated reduction of these catalysts in H2, N2 atmospheres was studied. La0.8K0.2MnO3 goes through a reversible oxygen loss at about 350°C corresponding to the reduction of the available Mn4+ to Mn3+ in H2, N2 atmospheres. By reduction at higher temperatures a previously unreported phase La2MnO4 is formed. The most reducing conditions (10% H2 in N2, >940°C) formed only La2O3 and MnO. Between 700 and 880°C in 10% H2 in N2 potassium was eliminated from the sample by reduction to the metal and evaporation. Analogous results were found for Na and Rb substituted LaMnO3 except that the intermediate phase La2MnO4 was not observed in the reduction of La0.8Rb0.2MnO3.  相似文献   

17.
The effect of lithium and manganese ions on the synthesis, phase purity, and electrochemical properties of tartaric acid gel processed lithium manganese oxide spinel were investigated. The poor bonding between both lithium and manganese ions with tartaric acid was shown by the FT-IR analysis when lithium nitrate and/or manganese nitrate were used as sources. Li2MnO3 and Mn2O3 impurities formed in addition to lithium manganese oxides when nitrate salts were used as the sources. When acetate salts were used as sources for the lithium and manganese ions, single-phase LiMn2O4 was obtained. These results indicate that homogeneous bonding between acetate salt and tartaric acid was formed. The capacity of single-phase LiMn2O4 calcined at 500°C was 117 mAh/g which was much higher than those containing Mn2O3 and Li2MnO3 impurity compounds. Thus, sources of lithium and manganese ions play an important role in the synthesis and electrochemical behaviors of lithium manganese oxide spinel.  相似文献   

18.
Chemical looping air separation (CLAS) has been suggested as a new and energy saving method for producing oxygen from air. The selection of suitable oxygen carriers is the key issue for CLAS system. This paper shows a comprehensive thermodynamic method for selecting oxygen carriers used for CLAS through studying the properties of 34 different oxygen releasing reactions referring to 18 elements at different temperatures. The research mainly includes analysis of oxygen releasing capacity by calculating the Gibbs free energy change (ΔG) and the equilibrium partial pressure of oxygen of the reduction or oxidation reaction at different temperatures. Oxygen content and transport capacity were calculated. The spontaneous reaction temperatures for oxygen releasing reactions were presented to determine the operating temperatures. Also, the minimum demand of the steam for the reduction reaction was discussed. On the basis of the comprehensive thermodynamic study, the oxide systems of CrO2/Cr2O3, PbO2/Pb3O4, PbO2/PbO, Pb3O4/PbO, MnO2/Mn2O3, and Ag2O/Ag have been found suitable for the CLAS process in low temperatures (500–800 K). The systems of PdO2/PdO, PdO2/Pd, PdO/Pd, MnO2/MnO, and MnO2/Mn3O4 were suitable for medium temperatures (800–1100 K) CLAS process. And Co3O4/CoO, CuO/Cu2O, Mn2O3/Mn3O4, and OsO2/Os systems only worked successfully in high temperatures (1100–1400 K). In addition, the CaO2/CaO system was not suitable for CLAS because of the reaction with steam. The various binders such as SiO2, TiO2, Al2O3, Y2O3, ZrO2, and YSZ which have been used for CLC could also be the supports for CLAS oxygen carriers.  相似文献   

19.
The solid-solid interactions between manganese and magnesium oxides in absence and in presence of small amounts of Li2O have been investigated. The molar ratios between manganese and magnesium oxides in the form of Mn2O3 and MgO were varied between 0.05:1 to 0.5:1. The mixed solids were calcined in air at 400-1000°C. The techniques employed were DTA, XRD and H2O2 decomposition at 20-40°C.The results obtained revealed that solid-solid interactions took place between the reacting solids at 600-1000°C yielding magnesium manganates (Mg2MnO4, Mg6MnO8, MgMnO4 besides unreacted portions of MgO, Mn2O3 and Mn3O4). Li2O-doping (0.75-6 mol%) of the investigated system followed by calcination at 600 and 800°C decreased progressively the intensity of the diffraction lines of Mn2O3 (Bixbyite) with subsequent increase in the lattice parameter 'a' of MgO to an extent proportional to the amount of Li2O added. This finding might suggest that the doping process enhanced the dissolution of Mn2O3 in MgO forming solid solution. This treatment led also to the formation of Li2MnO3. Furthermore, the doping with 3 and 6 mol% Li2O conducted at 800°C resulted in the conversion of Mn2O3 into Mn3O4, a process that took place at 1000°C in absence of Li2O. The produced Li2MnO3 phase remained stable by heating at up to 1000°C. Furthermore, Li2O doping of the investigated system at 400-1000°C resulted in a progressive measurable increase in the particle size of MgO.The catalytic activity measurements showed that the increase in the molar ratio of Mn2O3 in the samples precalcined at 400-800°C was accompanied by a significant increase in the catalytic activity of the treated solids. The maximum increase in the catalytic activity expressed as reaction rate constant measured at 20°C (k 20°C) attained 3.14, 2.67 and 3.25-fold for the solids precalcined at 400, 600 and 800°C, respectively. Li2O-doping of the samples having the formula 0.1 Mn2O3/MgO conducted at 400-600°C brought a progressive significant increase in its catalytic activity. The maximum increase in the value of k 20°C due to Li2O attained 1.93 and 2.75-fold for the samples preheated at 400 and 600°C, respectively and opposite effect was found for the doped samples preheated at 800°C.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
The K-birnessite (KxMnO2·yH2O) reduction reaction has been tested in order to obtain manganese spinel nanoparticles. The addition of 0.25 weight percent of hydrazine hydrate, the reducing agent, during 24 hours is efficient to transform the birnessite powder in a hausmanite Mn3O4 powder. Well crystallised square shape nanoparticles are obtained. Different birnessite precursors have been tested and the reaction kinetics is strongly correlated to the crystallinity and granulometry of the precursor. The effects of aging time and hydrazine hydrate amount have been studied. Well crystallised Mn3O4 is obtained in one hour. The presence of feitknechtite (MnO(OH)) and amorphous nanorods has been detected as an intermediate phase during birnessite conversion into hausmanite. The conversion mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号