首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixture electrolyte based on dimethyl sulfoxide (DMSO) and 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP][NTf2], with excellent reversibility of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been reported for Li–O2 batteries. The effect of the mixture electrolyte on current density, oxygen solubility, diffusion coefficient and oxygen reduction reaction (ORR) mechanism was investigated. The presence of [BMP][NTf2] increases the solubility of oxygen and while DMSO improves the reversibility of ORR and OER by facilitating the solubility of Li2Ox. Cyclic voltammetric studies showed that mixed electrolyte showed significantly enhanced current density and reversibility for ORR and OER compared to pure DMSO or [BMP][NTf2].  相似文献   

2.
Layered, lithium-rich Li[Li0.2Co0.3Mn0.5]O2 cathode material is synthesized by reactions under autogenic pressure at elevated temperature (RAPET) method, and its electrochemical behavior is studied in 2?M Li2SO4 aqueous solution and compared with that in a non-aqueous electrolyte. In cyclic voltammetry (CV), Li[Li0.2Co0.3Mn0.5]O2 electrode exhibits a pair of reversible redox peaks corresponding to lithium ion intercalation and deintercalation at the safe potential window without causing the electrolysis of water. CV experiments at various scan rates revealed a linear relationship between the peak current and the square root of scan rate for all peak pairs, indicating that the lithium ion intercalation–deintercalation processes are diffusion controlled. The corresponding diffusion coefficients are found to be in the order of 10?8?cm2?s?1. A typical cell employing Li[Li0.2Co0.3Mn0.5]O2 as cathode and LiTi2(PO4)3 as anode in 2?M Li2SO4 solution delivers a discharge capacity of 90?mA?h g?1. Electrochemical impedance spectral data measured at various discharge potentials are analyzed to determine the kinetic parameters which characterize intercalation–deintercalation of lithium ions in Li[Li0.2Co0.3Mn0.5]O2 from 2?M Li2SO4 aqueous electrolyte.  相似文献   

3.
Li‐O2 batteries are promising candidates for next‐generation high‐energy‐density battery systems. However, the main problems of Li–O2 batteries include the poor rate capability of the cathode and the instability of the Li anode. Herein, an ester‐based liquid additive, 2,2,2‐trichloroethyl chloroformate, was introduced into the conventional electrolyte of a Li–O2 battery. Versatile effects of this additive on the oxygen cathode and the Li metal anode became evident. The Li–O2 battery showed an outstanding rate capability of 2005 mAh g?1 with a remarkably decreased charge potential at a large current density of 1000 mA g?1. The positive effect of the halide ester on the rate capacity is associated with the improved solubility of Li2O2 in the electrolyte and the increased diffusion rate of O2. Furthermore, the ester promotes the formation of a solid–electrolyte interphase layer on the surface of the Li metal, which restrains the loss and volume change of the Li electrode during stripping and plating, thereby achieving a cycling stability over 900 h and a Li capacity utilization of up to 10 mAh cm?2.  相似文献   

4.
Li−O2 batteries with bis(trifluoromethanesulfonyl)imide-based ionic liquid (TFSI-IL) electrolyte are promising because TFSI-IL can stabilize O2 to lower charge overpotential. However, slow Li+ transport in TFSI-IL electrolyte causes inferior Li deposition. Here we optimize weak solvating molecule (anisole) to generate anisole-doped ionic aggregate in TFSI-IL electrolyte. Such unique solvation environment can realize not only high Li+ transport parameters but also anion-derived solid electrolyte interface (SEI). Thus, fast Li+ transport is achieved in electrolyte bulk and SEI simultaneously, leading to robust Li deposition with high rate capability (3 mA cm−2) and long cycle life (2000 h at 0.2 mA cm−2). Moreover, Li−O2 batteries show good cycling stability (a small overpotential increase of 0.16 V after 120 cycles) and high rate capability (1 A g−1). This work provides an effective electrolyte design principle to realize stable Li deposition and high-performance Li−O2 batteries.  相似文献   

5.
Cathode materials LiNi0.5Mn1.5O4 and LiNi0.5 ? x/2La x Mn1.5 ? x/2O4 (x = 0.04, 0.1, 0.14) were successfully prepared by the sol-gel self-combustion reaction (SCR) method. The X-ray diffraction (XRD) patterns indicated that, a few of doping La ions did not change the structure of LiNi0.5Mn1.5O4 material. The scanning electronic microscopy (SEM) showed that the sample heated at 800°C for 12 h and then annealed at 600°C for 10 h exhibited excellent geometry appearance. A novel electrolyte system, 0.7 mol L?1 lithium bis(oxalate)borate (LiBOB)-propylene carbonate (PC)/dimethyl carbonate (DMC) (1: 1, v/v), was used in the cycle performance test of the cell. The results showed that the cell with this novel electrolyte system performed better than the one with traditional electrolyte system, 1.0 mol L?1 LiPF6-ethylene carbonate (EC)/DMC (1: 1, v/v). And the electrochemical properties tests showed that LiNi0.45La0.1Mn1.45O4/Li cell performed better than LiNi0.5Mn1.5O4/Li cell at cycle performance, median voltage, and efficiency.  相似文献   

6.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   

7.
The microstructural and electrochemical properties of rf-sputtered LiMn2O4 films were investigated as a function of post-deposition process. The degree of crystallization in the films gradually increased with the increase of annealing temperature (T a). The films annealed at T a?=?973 K exhibited characteristic peaks with predominant (111) orientation representing the cubic spinel structure of Fd3m symmetry. The estimated Mn–Mn and Mn–O distances obtained from the X-ray diffraction data were observed to be increased slightly with T a. Characteristic changes in surface morphological features were observed as a function of T a as evidenced from scanning electron microscopy. The estimated root mean square (RMS) roughness of the films increased from 97 to 161 nm with augmentation of T a. The electrochemical studies, viz. cyclic voltammetry (CV), specific discharge capacity and Li ion diffusion coefficient were carried out for annealed LiMn2O4 films in saturated aqueous electrolyte (Li2SO4) in the potential window of 0–1.2 V and correlated with surface morphology and grain size. The LiMn2O4 films annealed at T a?=?973 K exhibited better electrochemical performance and demonstrated a discharge capacity of about 53.5 μA h cm?2 μm?1 with diffusion coefficient of 1.2?×?10?13 cm2 s?1.  相似文献   

8.
In this work, a polymer/ceramic phase-separation porous membrane is first prepared from polyvinyl alcohol–polyacrylonitrile water emulsion mixed with fumed nano-SiO2 particles by the phase inversion method. This porous membrane is then wetted by a non-aqueous Li–salt liquid electrolyte to form the polymer/colloid dual-phase electrolyte membrane. Compared to the liquid electrolyte in conventional polyolefin separator, the obtained electrolyte membrane has superior properties in high ionic conductivity (1.9 mS?cm?1 at 30 °C), high Li+ transference number (0.41), high electrochemical stability (extended up to 5.0 V versus Li+/Li on stainless steel electrode), and good interfacial stability with lithium metal. The test cell of Li/LiCoO2 with the electrolyte membrane as separator also shows high-rate capability and excellent cycle performance. The polymer/colloid dual-phase electrolyte membrane shows promise for application in rechargeable lithium batteries.  相似文献   

9.
The mechanism of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 cathode material prepared by reactions under autogenic pressure at elevated temperatures method is investigated both in aqueous and non-aqueous electrolytes using electrochemical impedance spectroscopy (EIS) technique. In accordance with the results obtained an equivalent circuit is used to fit the impedance spectra. The kinetic parameters of intercalation/de-intercalation processes are evaluated with the help of the same equivalent circuit. The dependence of charge transfer resistance (R ct), exchange current (I 0), double layer capacitance (C dl), Warburg resistance (Z w), and chemical diffusion coefficient (D Li+) on potential during intercalation/de-intercalation is studied. The behavior of EIS spectra and its potential dependence is studied to get the kinetics of the mechanism of intercalation/de-intercalation processes, which cannot be obtained from the usual electrochemical studies like cyclic voltammetry. The results indicate that intercalation and de-intercalation of lithium ions in aqueous solution follows almost similar mechanism in non-aqueous system. D Li+ values are in the range of 10?8 to 10?14?cm2?s?1 in aqueous 5?M LiNO3 and that in non-aqueous 1?M LiAsF6/EC+DMC electrolyte is in the order of 10?12?cm2?s?1 during the intercalation/de-intercalation processes. A typical cell LiTi2 (PO4)3/5?M LiNO3/LiNi1/3Mn1/3Co1/3O2 is constructed and the cycling stability is compared to that with an organic electrolyte.  相似文献   

10.
Electrodiffusion properties of chromium-substituted lithium-manganese spinel Li x Mn1.95Cr0.05O4 intended for application as a cathodic material for lithium-ion batteries is studied. The studies are carried out at 25°C using the electrochemical impedance spectroscopy technique in alkyl-carbonate electrolyte. In the analysis of impedance spectra, the apparatus of electric equivalent circuits was employed to determine surface layer resistances, double electric layer capacitance, differential intercalation capacity, chemical diffusion coefficient D of lithium, and other electrode characteristics. The issues of substantiating the choice of electric equivalent circuits and correct interpretation of their elements are discussed; dependences of the calculated model parameters on the electrode potential (lithium concentration in the electrode) are analyzed. The chemical diffusion coefficient of Li+ in Li x Mn1.95Cr0.05O4 found on the basis of the impedance spectra is in the range of 10?9 to 10?12 cm2/s under electrode potential variation in the range of 3.5–4.5 V (vs. Li/Li+) with a pronounced minimum of D in the middle of this range. Repeated cycling of the electrode is accompanied by a gradual increase in resistance of the solid-electrolyte interphase (SEI).  相似文献   

11.
A rechargeable Li metal anode coupled with a high‐voltage cathode is a promising approach to high‐energy‐density batteries exceeding 300 Wh kg?1. Reported here is an advanced dual‐additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate‐based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F‐ and B‐containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg?1 at cell‐level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

12.
The electrolytes in lithium metal batteries have to be compatible with both lithium metal anodes and high voltage cathodes, and can be regulated by manipulating the solvation structure. Herein, to enhance the electrolyte stability, lithium nitrate (LiNO3) and 1,1,2,2-tetrafuoroethyl-2′,2′,2′-trifuoroethyl(HFE) are introduced into the high-concentration sulfolane electrolyte to suppress Li dendrite growth and achieve a high Coulombic efficiency of >99 % for both the Li anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Molecular dynamics simulations show that NO3 participates in the solvation sheath of lithium ions enabling more bis(trifluoromethanesulfonyl)imide anion (TFSI) to coordinate with Li+ ions. Therefore, a robust LiNxOy−LiF-rich solid electrolyte interface (SEI) is formed on the Li surface, suppressing Li dendrite growth. The LiNO3-containing sulfolane electrolyte can also support the highly aggressive LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode, delivering a discharge capacity of 190.4 mAh g−1 at 0.5 C for 200 cycles with a capacity retention rate of 99.5 %.  相似文献   

13.
A rechargeable Li metal anode coupled with a high-voltage cathode is a promising approach to high-energy-density batteries exceeding 300 Wh kg−1. Reported here is an advanced dual-additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate-based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F- and B-containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg−1 at cell-level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

14.
Lithium (Li) dendrite formation is one of the major hurdles limiting the development of Li‐metal batteries, including Li‐O2 batteries. Herein, we report the first observation of the dendrite‐free epitaxial growth of a Li metal up to 10‐μm thick during charging (plating) in the LiBr‐LiNO3 dual anion electrolyte under O2 atmosphere. This phenomenon is due to the formation of an ultrathin and homogeneous Li2O‐rich solid‐electrolyte interphase (SEI) layer in the preceding discharge (stripping) process, where the corrosive nature of Br? seems to give rise to remove the original incompact passivation layer and NO3? oxidizes (passivates) the freshly formed Li surface to prevent further reactions with the electrolyte. Such reactions keep the SEI thin (<100 nm) and facilitates the electropolishing effect and gets ready for the epitaxial electroplating of Li in the following charge process.  相似文献   

15.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2?, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li‐air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open‐air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high‐performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2?. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g?1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

16.
In this work we aim towards the molecular understanding of the solid electrolyte interphase (SEI) formation at the electrode electrolyte interface (EEI). Herein, we investigated the interaction between the battery-relevant ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI), Li and a Co3O4(111) thin film model anode grown on Ir(100) as a model study of the SEI formation in Li-ion batteries (LIBs). We employed mostly X-ray photoelectron spectroscopy (XPS) in combination with dispersion-corrected density functional theory calculations (DFT-D3). If the surface is pre-covered by BMP-TFSI species (model electrolyte), post-deposition of Li (Li+ ion shuttle) reveals thermodynamically favorable TFSI decomposition products such as LiCN, Li2NSO2CF3, LiF, Li2S, Li2O2, Li2O, but also kinetic products like Li2NCH3C4H9 or LiNCH3C4H9 of BMP. Simultaneously, Li adsorption and/or lithiation of Co3O4(111) to LinCo3O4 takes place due to insertion via step edges or defects; a partial transformation to CoO cannot be excluded. Formation of Co0 could not be observed in the experiment indicating that surface reaction products and inserted/adsorbed Li at the step edges may inhibit or slow down further Li diffusion into the bulk. This study provides detailed insights of the SEI formation at the EEI, which might be crucial for the improvement of future batteries.  相似文献   

17.
Taylor dispersion is used to measure mutual diffusion coefficients for aqueous Li2SO4 solutions at concentrations from 0.09 to 2.62 mol-dm-3 at 25°C. The Li2SO4 results and previously reported diffusion coefficients for aqueous Na2SO4 and K2SO4 are compared with predictions made by treating the limiting electrolyte diffusion coefficients as reference values and applying corrections for nonideal solution behavior, ionic hydration, and viscosity changes as the concentration is raised. Good agreement is obtained if the M+ + SO 4 2- ? MSO 4 - (M = Li, Na, K) association equilibria are included in the analysis. Extents of formation of the MSO 4 - ion pairs are evaluated by fitting Pitzer's mixed electrolyte equations for aqueous M+–MSO 4 - –SO 4 2- ions to osmotic coefficient data. Diffusion coefficients for hypothetical solutions of the completely dissociated M2SO4 electrolytes are calculated to illustrate the effects of ion association on diffusion. Association of the M+ and SO 4 2- ions increases the overall mobility and thermodynamic driving forces for their diffusion.  相似文献   

18.
The high-temperature solid oxide fuel cell (SOFC) is suited for the environmentally acceptable and efficient conversion of chemical into electric energy. A prerequisite for introducing this technology on the market is the controlled formation of the interface between electrodes and the electrolyte. In the case of using an electrolyte based on LaGaO3 the formation of third phases and the diffusion of individual metallic cations from and to the electrolyte was investigated with the aid of point analyses on micrographs of the environment of the interface using quantitative EDS analysis. In case of an anode of Ni-CeO2 cermet the mixed oxide SrLaGa3O7 is formed and, in addition, a relatively pronounced transport of La from the electrolyte into the CeO2 phase was observed. A relatively strong diffusion of Mn and an even stronger diffusion of Co into the electrolyte took place between the cathode of, e.g., La0.75Sr0.2Mn0.8Co0.2O3 and the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte, whereas a weak transport of Ga to the cathode was identified.  相似文献   

19.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li-air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open-air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high-performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g−1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

20.
Batteries with an aqueous catholyte and a Li metal anode have attracted interest owing to their exceptional energy density and high charge/discharge rate. The long‐term operation of such batteries requires that the solid electrolyte separator between the anode and aqueous solutions must be compatible with Li and stable over a wide pH range. Unfortunately, no such compound has yet been reported. In this study, an excellent stability in neutral and strongly basic solutions was observed when using the cubic Li7La3Zr2O12 garnet as a Li‐stable solid electrolyte. The material underwent a Li+/H+ exchange in aqueous solutions. Nevertheless, its structure remained unchanged even under a high exchange rate of 63.6 %. When treated with a 2 M LiOH solution, the Li+/H+ exchange was reversed without any structural change. These observations suggest that cubic Li7La3Zr2O12 is a promising candidate for the separator in aqueous lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号